Автор24

Информация о работе

Подробнее о работе

Страница работы

Расчетно-графическая работа по дисциплине "Математические методы и исследование операций в экономике"

  • 35 страниц
  • 2016 год
  • 261 просмотр
  • 0 покупок
Автор работы

gusevserg

500 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

5 заданий с подробным решением.

Задача №1 - Составить экономико-математическую модель задачи линейного программирования и решить её.
Кондитерская фабрика для производства трёх видов карамели A,B,C использует три вида основного сырья: сахарный песок, патоку, фруктовое пюре. Нормы расхода каждого вида сырья на производство 1т. карамели данного вида приведены в таблице. В ней также указано общее количество сырья каждого вида, которое может быть использовано фабрикой, а также приведена прибыль от реализации 1т. карамели данного типа.
Сформулировать ЭММ задачи на максимум прибыли.

Задача №2 - Решить задачу линейного программирования графическим методом

Задача №3 - Решить задачу линейного программирования симплексным методом

Задача №4 - Составить ЭММ и решить транспортную задачу (задачу, сводящуюся к транспортной)
В резерве трёх железнодорожных станций А, В, С находятся соответственно 60, 80 и 100 вагонов. Составить оптимальный план перегона этих вагонов к четырём пунктам погрузки хлеба, если пункту №1 необходимо 40 вагонов, №2 – 60 вагонов, №3 – 80 вагонов и №4 – 60 вагонов. Стоимость перегона одного вагона со станции А в указанные пункты соответственно равна 1, 2, 3, 4 руб., со станции В – соответственно равна 4, 3, 2, 0 руб., и со станции С – 0, 2, 2, 1 руб.

Задача №5 - Провести анализ решения прямой и двойственной задач линейного программирования.
Для изготовления изделий А, В и С предприятие использует три вида сырья:

Вид сырья Нормы расхода сырья на одно изделие, кг. Запасы сырья, кг.
A B C
I 18 15 12 360
II 6 4 8 192
III 5 3 3 180
Цена одного изделия, руб. 9 10 16
Составить план производства изделий, при котором стоимость всей производящейся предприятием продукции является максимальной.
Сформулировать двойственную задачу и найти её оптимальный план.
Определить интервалы устойчивости двойственных оценок по отношению к изменению запасов сырья каждого вида. Определить увеличение стоимости продукции при увеличении количества сырья соответственно на 30, 40 и 50кг. Оценить суммарное и раздельное влияние этих изменений.

Задание №2
Графический метод решения задач линейного программирования
Решить задачи линейного программирования графическим методом
при следующих ограничениях:

Решение:
1. В системе координат х1Ох2 построим область допустимых значений, отвечающую данной системе ограничений и условию неотрицательности переменных. Для построения множества решений системы неравенств строим последовательно множество решений каждого неравенства и находим общее решение для всех неравенств.

Рис 1. Графическое решение ЗЛП, область решения – открытая многоугольная область

На рисунке 1 показана линия уровня (x2:2),построенная по целевой функции, приравненной к нулю, а также прямые x1=5, x1=1+x2 и x1=(12-3x2):2, найденные путём приведения уравнений системы (соответственно 3-его, 2-ого и 1-ого) к каноническому виду.
Решением системы неравенств является выпуклая неограниченная многоугольная область - открытый многоугольник.

Задание №3
Симплексный метод решения задач линейного программирования
Решить задачу линейного программирования симплексным методом:

при ограничениях:

Решение:
Система ограничений состоит только из уравнений, поэтому она является канонической. Переводим задачу с решением на минимум на задачу с решением на максимум, причём во второе уравнение системы вводим дополнительную переменную y1, и решаем задачу линейного программирования M-методом (методом ввода искусственного базиса). Целевую функцию запишем в следующем виде:
T=x1-x2-My1max

Решим задачу симплексным табличным методом. Заполняем симплексную таблицу, в которой переменные основные.

Базис
cj
ci
План
В
1
-1
0
0
0
-M
Q

x1
x2
x3
x4
x5
y1

0
x4
y1
x1
0
-M
0
2
8
5
-2
-1
1
1
2
1
1
0
0
0
-1
0
0
0
1
0
1
0
2
4
5

j
-
-8M
M-1
-2M+1
0
M
0
0

Проверяем критерий оптимальности. Рассчитываем строку оценок по формуле:
.
...

Задание №4
Транспортная задача
Составить ЭММ и решить транспортную задачу (задачу, сводящуюся к транспортной)
В резерве трёх железнодорожных станций А, В, С находятся соответственно 60, 80 и 100 вагонов. Составить оптимальный план перегона этих вагонов к четырём пунктам погрузки хлеба, если пункту №1 необходимо 40 вагонов, №2 – 60 вагонов, №3 – 80 вагонов и №4 – 60 вагонов. Стоимость перегона одного вагона со станции А в указанные пункты соответственно равна 1, 2, 3, 4 руб., со станции В – соответственно равна 4, 3, 2, 0 руб., и со станции С – 0, 2, 2, 1 руб.
Решение:
1. Составление ЭММ
Пусть -исходный объём перегонки от i-ой станции (поставщик услуги) к j-му пункту погрузки хлеба (потребитель услуги). Заданные мощности поставщиков и спросы потребителей накладывают ограничения на значения неизвестных .
...

Задание №5
Провести анализ решения прямой и двойственной задач линейного программирования.
Для изготовления изделий А, В и С предприятие использует три вида сырья:

Вид сырья
Нормы расхода сырья на одно изделие, кг.
Запасы сырья, кг.

A
B
C

I
18
15
12
360
II
6
4
8
192
III
5
3
3
180
Цена одного изделия, руб.
9
10
16

Составить план производства изделий, при котором стоимость всей производящейся предприятием продукции является максимальной.
Сформулировать двойственную задачу и найти её оптимальный план.
Определить интервалы устойчивости двойственных оценок по отношению к изменению запасов сырья каждого вида. Определить увеличение стоимости продукции при увеличении количества сырья соответственно на 30, 40 и 50кг. Оценить суммарное и раздельное влияние этих изменений.
Решение:

Предположим, что х1 – количество изделий вида A, заплaнированное к производсву, х2 – количество изделий вида B, запланированных к производству, x3 – количество изделий вида C, запланированное к производству.
...

Задание №2
Графический метод решения задач линейного программирования
Решить задачи линейного программирования графическим методом
при следующих ограничениях:

Решение:
1. В системе координат х1Ох2 построим область допустимых значений, отвечающую данной системе ограничений и условию неотрицательности переменных. Для построения множества решений системы неравенств строим последовательно множество решений каждого неравенства и находим общее решение для всех неравенств.

Рис 1. Графическое решение ЗЛП, область решения – открытая многоугольная область

На рисунке 1 показана линия уровня (x2:2),построенная по целевой функции, приравненной к нулю, а также прямые x1=5, x1=1+x2 и x1=(12-3x2):2, найденные путём приведения уравнений системы (соответственно 3-его, 2-ого и 1-ого) к каноническому виду.
Решением системы неравенств является выпуклая неограниченная многоугольная область - открытый многоугольник.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Курсовую работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

5 заданий с подробным решением.

Задача №1 - Составить экономико-математическую модель задачи линейного программирования и решить её.
Кондитерская фабрика для производства трёх видов карамели A,B,C использует три вида основного сырья: сахарный песок, патоку, фруктовое пюре. Нормы расхода каждого вида сырья на производство 1т. карамели данного вида приведены в таблице. В ней также указано общее количество сырья каждого вида, которое может быть использовано фабрикой, а также приведена прибыль от реализации 1т. карамели данного типа.
Сформулировать ЭММ задачи на максимум прибыли.

Задача №2 - Решить задачу линейного программирования графическим методом

Задача №3 - Решить задачу линейного программирования симплексным методом

Задача №4 - Составить ЭММ и решить транспортную задачу (задачу, сводящуюся к транспортной)
В резерве трёх железнодорожных станций А, В, С находятся соответственно 60, 80 и 100 вагонов. Составить оптимальный план перегона этих вагонов к четырём пунктам погрузки хлеба, если пункту №1 необходимо 40 вагонов, №2 – 60 вагонов, №3 – 80 вагонов и №4 – 60 вагонов. Стоимость перегона одного вагона со станции А в указанные пункты соответственно равна 1, 2, 3, 4 руб., со станции В – соответственно равна 4, 3, 2, 0 руб., и со станции С – 0, 2, 2, 1 руб.

Задача №5 - Провести анализ решения прямой и двойственной задач линейного программирования.
Для изготовления изделий А, В и С предприятие использует три вида сырья:

Вид сырья Нормы расхода сырья на одно изделие, кг. Запасы сырья, кг.
A B C
I 18 15 12 360
II 6 4 8 192
III 5 3 3 180
Цена одного изделия, руб. 9 10 16
Составить план производства изделий, при котором стоимость всей производящейся предприятием продукции является максимальной.
Сформулировать двойственную задачу и найти её оптимальный план.
Определить интервалы устойчивости двойственных оценок по отношению к изменению запасов сырья каждого вида. Определить увеличение стоимости продукции при увеличении количества сырья соответственно на 30, 40 и 50кг. Оценить суммарное и раздельное влияние этих изменений.

Задание №2
Графический метод решения задач линейного программирования
Решить задачи линейного программирования графическим методом
при следующих ограничениях:

Решение:
1. В системе координат х1Ох2 построим область допустимых значений, отвечающую данной системе ограничений и условию неотрицательности переменных. Для построения множества решений системы неравенств строим последовательно множество решений каждого неравенства и находим общее решение для всех неравенств.

Рис 1. Графическое решение ЗЛП, область решения – открытая многоугольная область

На рисунке 1 показана линия уровня (x2:2),построенная по целевой функции, приравненной к нулю, а также прямые x1=5, x1=1+x2 и x1=(12-3x2):2, найденные путём приведения уравнений системы (соответственно 3-его, 2-ого и 1-ого) к каноническому виду.
Решением системы неравенств является выпуклая неограниченная многоугольная область - открытый многоугольник.

Задание №3
Симплексный метод решения задач линейного программирования
Решить задачу линейного программирования симплексным методом:

при ограничениях:

Решение:
Система ограничений состоит только из уравнений, поэтому она является канонической. Переводим задачу с решением на минимум на задачу с решением на максимум, причём во второе уравнение системы вводим дополнительную переменную y1, и решаем задачу линейного программирования M-методом (методом ввода искусственного базиса). Целевую функцию запишем в следующем виде:
T=x1-x2-My1max

Решим задачу симплексным табличным методом. Заполняем симплексную таблицу, в которой переменные основные.

Базис
cj
ci
План
В
1
-1
0
0
0
-M
Q

x1
x2
x3
x4
x5
y1

0
x4
y1
x1
0
-M
0
2
8
5
-2
-1
1
1
2
1
1
0
0
0
-1
0
0
0
1
0
1
0
2
4
5

j
-
-8M
M-1
-2M+1
0
M
0
0

Проверяем критерий оптимальности. Рассчитываем строку оценок по формуле:
.
...

Задание №4
Транспортная задача
Составить ЭММ и решить транспортную задачу (задачу, сводящуюся к транспортной)
В резерве трёх железнодорожных станций А, В, С находятся соответственно 60, 80 и 100 вагонов. Составить оптимальный план перегона этих вагонов к четырём пунктам погрузки хлеба, если пункту №1 необходимо 40 вагонов, №2 – 60 вагонов, №3 – 80 вагонов и №4 – 60 вагонов. Стоимость перегона одного вагона со станции А в указанные пункты соответственно равна 1, 2, 3, 4 руб., со станции В – соответственно равна 4, 3, 2, 0 руб., и со станции С – 0, 2, 2, 1 руб.
Решение:
1. Составление ЭММ
Пусть -исходный объём перегонки от i-ой станции (поставщик услуги) к j-му пункту погрузки хлеба (потребитель услуги). Заданные мощности поставщиков и спросы потребителей накладывают ограничения на значения неизвестных .
...

Задание №5
Провести анализ решения прямой и двойственной задач линейного программирования.
Для изготовления изделий А, В и С предприятие использует три вида сырья:

Вид сырья
Нормы расхода сырья на одно изделие, кг.
Запасы сырья, кг.

A
B
C

I
18
15
12
360
II
6
4
8
192
III
5
3
3
180
Цена одного изделия, руб.
9
10
16

Составить план производства изделий, при котором стоимость всей производящейся предприятием продукции является максимальной.
Сформулировать двойственную задачу и найти её оптимальный план.
Определить интервалы устойчивости двойственных оценок по отношению к изменению запасов сырья каждого вида. Определить увеличение стоимости продукции при увеличении количества сырья соответственно на 30, 40 и 50кг. Оценить суммарное и раздельное влияние этих изменений.
Решение:

Предположим, что х1 – количество изделий вида A, заплaнированное к производсву, х2 – количество изделий вида B, запланированных к производству, x3 – количество изделий вида C, запланированное к производству.
...

Задание №2
Графический метод решения задач линейного программирования
Решить задачи линейного программирования графическим методом
при следующих ограничениях:

Решение:
1. В системе координат х1Ох2 построим область допустимых значений, отвечающую данной системе ограничений и условию неотрицательности переменных. Для построения множества решений системы неравенств строим последовательно множество решений каждого неравенства и находим общее решение для всех неравенств.

Рис 1. Графическое решение ЗЛП, область решения – открытая многоугольная область

На рисунке 1 показана линия уровня (x2:2),построенная по целевой функции, приравненной к нулю, а также прямые x1=5, x1=1+x2 и x1=(12-3x2):2, найденные путём приведения уравнений системы (соответственно 3-его, 2-ого и 1-ого) к каноническому виду.
Решением системы неравенств является выпуклая неограниченная многоугольная область - открытый многоугольник.

Купить эту работу

Расчетно-графическая работа по дисциплине "Математические методы и исследование операций в экономике"

500 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 500 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

11 июня 2016 заказчик разместил работу

Выбранный эксперт:

Автор работы
gusevserg
4.6
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
500 ₽ Цена от 500 ₽

5 Похожих работ

Отзывы студентов

Отзыв Ксу об авторе gusevserg 2017-04-03
Курсовая работа

Работа выполнена на отлично,автор выполнил в срок.Заказываю у этого автора не в первый раз,все быстро и качественно.Рекомендую

Общая оценка 5
Отзыв Анастасия Герасимова об авторе gusevserg 2015-04-24
Курсовая работа

Если математика королева ,то Александр ее король!Я заказывала две курсовые работы, и осталась очень довольна, выполнены все требования качественно и в срок , рекомендую!

Общая оценка 5
Отзыв Helene2013 об авторе gusevserg 2014-12-18
Курсовая работа

Работа сделана качественно и в срок.

Общая оценка 5
Отзыв Алексей Михайлов об авторе gusevserg 2018-07-30
Курсовая работа

Все ок!

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Численное моделирование двумерной обратной задачи для параболического уравнения

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

Технология изучения многочленов в классах с углубленным изучением математики.

Уникальность: от 40%
Доступность: сразу
2300 ₽
Готовая работа

Задачи и методы аналитической теории чисел

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Использование различных средств оценивания в контексте подготовки к единому государственному экзамену по математике

Уникальность: от 40%
Доступность: сразу
25000 ₽
Готовая работа

Численный анализ газодинамических течений

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Развитие познавательных УУД обучающихся 5-х классов при обучении решению текстовых задач по математике

Уникальность: от 40%
Доступность: сразу
1650 ₽
Готовая работа

Тестовые задания в теории функций комплексного переменного

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Для МЕХМАТА. Пространства двузначных функций с топологией поточечной сходимости. УНИКАЛЬНОЕ НАУЧНОЕ ИССЛЕДОВАНИЕ.

Уникальность: от 40%
Доступность: сразу
7500 ₽
Готовая работа

Формирование эвристик в процессе обучения младших школьников решению текстовых задач».

Уникальность: от 40%
Доступность: сразу
4000 ₽
Готовая работа

Первообразная в школьном курсе математики: теория, методика преподавания, системы упражнений, контрольно-измерительные материалы

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Геометрия треугольника

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Методы технического анализа на валютном рынке

Уникальность: от 40%
Доступность: сразу
2000 ₽