Рассчитай точную стоимость своей работы и получи промокод на скидку 500 ₽
Автор24

Информация о работе

Подробнее о работе

Страница работы

Решения диференциальных уравнений с помощью степенных рядов

  • 22 страниц
  • 2015 год
  • 235 просмотров
  • 1 покупка
Автор работы

EkaterinaKonstantinovna

15 000+ выполненных заказов 📚 Работа с etxt и антиплагиат (вуз/бесплатный) Корректировки возможны ✍

660 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Лучше всего это делать в виде дифференциальных уравнений (ДУ) или системы дифференциальных уравнений. Наиболее часто такая задача возникает при решении проблем, связанных с моделированием кинетики химических реакций и различных явлений переноса (тепла, массы, импульса) – теплообмена, перемешивания, сушки, адсорбции, при описании движения макро- и микрочастиц.
Известные методы точного интегрирования дифференциальных уравнений позволяют найти решение в виде аналитической функции, однако эти методы применимы для очень ограниченного класса функций. Большинство уравнений, встречающихся при решении практических задач нельзя проинтегрировать с помощью этих методов.
В таких случаях используются численные методы решения, которые представляют решение дифференциального уравнения не в виде аналитической функции, а в виде таблиц значений искомой функции в зависимости от значения переменной.
Существует несколько методов численного интегрирования дифференциальных уравнений, которые отличаются друг от друга по сложности вычислений и точности результата.
Рассмотрим три основных метода приближенного решения обыкновенных дифференциальных уравнений первого порядка: Метод ломанных (Эйлера), метод последовательных приближений (Пикара) и метод разложения решения в степенной ряд.

Введение 3
Понятие дифференциального уравнения 4
Понятие степенного ряда 9
Решение дифференциальных уравнений с помощью рядов 13
Применение метода для уравнения первого порядка 15
Примеры решения задачи в Maple 17
Пример уравнения второго порядка 20
Заключение 21
Список используемой литературы 22


В данной работе был рассмотрен основной метод приближенного решения обыкновенных дифференциальных уравнений первого порядка: метод разложения решения в степенной ряд.
Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

1. Лапчик М.П., Рагулина М.И., Хеннер Е.К. Численные методы. – М.: Академия, 2005. – 384 с.
2. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. – М.: Наука, 1967. – 368 с.
3. Ортега Дж., Пул У. Ведение в численные методы решения дифференциальных уравнений. – М.: Наука, 1986. – 288 с.
4. Хартман Ф. Обыкновенные дифференциальные уравнения. – М.: Мир, 1970. – 720 с.
5. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. – М.: Наука, 1974. – 331 с.
6. Вержбицкий В.М. Основы численных методов. – М.: Высшая школа, 2001. – 382 с.

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Курсовую работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Лучше всего это делать в виде дифференциальных уравнений (ДУ) или системы дифференциальных уравнений. Наиболее часто такая задача возникает при решении проблем, связанных с моделированием кинетики химических реакций и различных явлений переноса (тепла, массы, импульса) – теплообмена, перемешивания, сушки, адсорбции, при описании движения макро- и микрочастиц.
Известные методы точного интегрирования дифференциальных уравнений позволяют найти решение в виде аналитической функции, однако эти методы применимы для очень ограниченного класса функций. Большинство уравнений, встречающихся при решении практических задач нельзя проинтегрировать с помощью этих методов.
В таких случаях используются численные методы решения, которые представляют решение дифференциального уравнения не в виде аналитической функции, а в виде таблиц значений искомой функции в зависимости от значения переменной.
Существует несколько методов численного интегрирования дифференциальных уравнений, которые отличаются друг от друга по сложности вычислений и точности результата.
Рассмотрим три основных метода приближенного решения обыкновенных дифференциальных уравнений первого порядка: Метод ломанных (Эйлера), метод последовательных приближений (Пикара) и метод разложения решения в степенной ряд.

Введение 3
Понятие дифференциального уравнения 4
Понятие степенного ряда 9
Решение дифференциальных уравнений с помощью рядов 13
Применение метода для уравнения первого порядка 15
Примеры решения задачи в Maple 17
Пример уравнения второго порядка 20
Заключение 21
Список используемой литературы 22


В данной работе был рассмотрен основной метод приближенного решения обыкновенных дифференциальных уравнений первого порядка: метод разложения решения в степенной ряд.
Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

1. Лапчик М.П., Рагулина М.И., Хеннер Е.К. Численные методы. – М.: Академия, 2005. – 384 с.
2. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. – М.: Наука, 1967. – 368 с.
3. Ортега Дж., Пул У. Ведение в численные методы решения дифференциальных уравнений. – М.: Наука, 1986. – 288 с.
4. Хартман Ф. Обыкновенные дифференциальные уравнения. – М.: Мир, 1970. – 720 с.
5. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. – М.: Наука, 1974. – 331 с.
6. Вержбицкий В.М. Основы численных методов. – М.: Высшая школа, 2001. – 382 с.

Купить эту работу

Решения диференциальных уравнений с помощью степенных рядов

660 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 500 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

23 июня 2017 заказчик разместил работу

Выбранный эксперт:

Автор работы
EkaterinaKonstantinovna
4.5
15 000+ выполненных заказов 📚 Работа с etxt и антиплагиат (вуз/бесплатный) Корректировки возможны ✍
Купить эту работу vs Заказать новую
1 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
660 ₽ Цена от 500 ₽

5 Похожих работ

Отзывы студентов

Отзыв Ксу об авторе EkaterinaKonstantinovna 2017-04-03
Курсовая работа

Работа выполнена на отлично,автор выполнил в срок.Заказываю у этого автора не в первый раз,все быстро и качественно.Рекомендую

Общая оценка 5
Отзыв Анастасия Герасимова об авторе EkaterinaKonstantinovna 2015-04-24
Курсовая работа

Если математика королева ,то Александр ее король!Я заказывала две курсовые работы, и осталась очень довольна, выполнены все требования качественно и в срок , рекомендую!

Общая оценка 5
Отзыв Helene2013 об авторе EkaterinaKonstantinovna 2014-12-18
Курсовая работа

Работа сделана качественно и в срок.

Общая оценка 5
Отзыв Алексей Михайлов об авторе EkaterinaKonstantinovna 2018-07-30
Курсовая работа

Все ок!

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Технология изучения многочленов в классах с углубленным изучением математики.

Уникальность: от 40%
Доступность: сразу
2300 ₽
Готовая работа

Численное моделирование двумерной обратной задачи для параболического уравнения

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

Задачи и методы аналитической теории чисел

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Использование различных средств оценивания в контексте подготовки к единому государственному экзамену по математике

Уникальность: от 40%
Доступность: сразу
25000 ₽
Готовая работа

Численный анализ газодинамических течений

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Тестовые задания в теории функций комплексного переменного

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Для МЕХМАТА. Пространства двузначных функций с топологией поточечной сходимости. УНИКАЛЬНОЕ НАУЧНОЕ ИССЛЕДОВАНИЕ.

Уникальность: от 40%
Доступность: сразу
7500 ₽
Готовая работа

Формирование эвристик в процессе обучения младших школьников решению текстовых задач».

Уникальность: от 40%
Доступность: сразу
4000 ₽
Готовая работа

Первообразная в школьном курсе математики: теория, методика преподавания, системы упражнений, контрольно-измерительные материалы

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Геометрия треугольника

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Методы технического анализа на валютном рынке

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Разработка методического пособия по дисциплине Уравнения математической физике

Уникальность: от 40%
Доступность: сразу
3000 ₽