Работа выполнена на отлично,автор выполнил в срок.Заказываю у этого автора не в первый раз,все быстро и качественно.Рекомендую
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
Школьный предмет «Математика» предоставляет широкие возможности личностного развития учащихся. Знания, полученные в курсе математики, должны рассматриваться не как самоцель, а как средство развития мышления учащихся, творческих способностей и мотивов деятельности.
Содержание курса математики позволяет учащимся отрабатывать навыкирешения одной и той же задачи, искать пути решения проблемы различнымиспособами.
Как правило, большинство трудностей у учащихся возникает в связи сотсутствием информации по анализу эффективности решения конкретной задачи тем или иным методом, отсутствием навыков творческого применения своих знаний.
Ученик решает ее «традиционным» способом, который, сопряжен с большим объемом работы по преодолению технических трудностей. Обучающиеся испытывают затруднения в переносе и применении знаний и умений одной темы математического курса в решении задач другой темы.
Так формируемые в течение всего курса алгебры и математического анализа знания по теме «Свойства функций» не всегда находят свое рациональное применение учащимися при решении задач.
Обучение учащихся методам и приемам использования свойств функций для решения уравнений и неравенств позволяет на примере конкретной темы школьного курса математики (свойства числовых функций) перейти к применению этих знаний для решения конкретных задач, мотивирую их тем самым к более глубокому изучению свойств функций.
Применение функций при решении алгебраических задач позволяет развивать гибкость и оригинальностьмышления,, математическое воображение и интуицию, способность прогнозировать, позволяет перевести целый класс задач из разряда «сложных» в разряд относительно простых.
Объект исследования - задачи школьного курса математики повышенной сложности.
Предмет исследования - применение свойств функции для решенияуравнений и неравенств.
Цельюкурсовой работы является систематизация методов решения алгебраических задач повышенной сложности.
Введение 3
1. Основные теретические сведения 5
1.2 Понятия и свойства функций, используемые для решения уравнений повышенной сложности 5
1.1 Решение неравенств повышенной сложности методом замены множителей. Теоретическое обоснование метода замены множителей 8
1.3 Замена множителей в некоторых элементарных функциях 11
1.4 Выводы к методу замены множителей 14
2. Примеры решения задач повышенной сложности 17
2.1 Применение области определения и множества значений 17
2.2 Использование ограниченности функций 17
2.3 Использование свойств монотонности функции 18
2.4 Решение неравенств методом замены множителей 19
3. Приложение 20
3.1 Условия задач 20
Решение задач и ответы 21
3.3 Задачи для самостоятельного решения 30
Заключение 32
Cписок литературы 33
Изучение задач физики, техники, геометрии часто приводит к исследованию функций .
Многообразие задач на эту тему охватывает весь курс школьной математики.
В настоящее время задачи связанные с иследованием функций входят в перечень заданий Единого Государственного Экзамена (ЕГЭ). Большие сложности вызывают задачи, содержащие логарифмические, показательные, степенные функции в их различной комбинации. Но эти задачи рассматриваются только на факультативных занятиях, а их решение требует не только знания свойств функций и уравнений, но и умения выполнять алгебраические преобразования, а также высокой логической культуры и хорошей техники исследования.
Поэтому владение приемами решения этих задач можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления. Трудности, возникающие при изучении данного вида задач в основном такие же, как для задач других типов. Кроме того, появляются еще и другие, обусловленные свойствами трансцендентных функций, большое количество формул и методов, используемых при решении этих задач.
Как показывает опыт и многочисленные отклики преподавателей математики при обсуждении различных методов решения задач повышенной сложности, школьниками хорошо усваиваются методы, являющиеся по своей сути алгоритмичными или сводящиеся к некоторой совокупности алгоритмичных действий.
Приведенные примеры решения задач призваны продемонстрировать преимущество применения свойств функций для решения уравнений и неравенств.
1. Беспрозванных В.К., Никифорова Е.Г. Сборник задач для подготовки к централизованному тестированию, единому государственному экзамену по математике. Ч.1/Алт. гос. техн. ун-т им. И.И.Ползунова. – Барнаул: Изд-во АлтГТУ, 2002
2. Беспрозванных В.К., Никифорова Е.Г. Сборник задач для подготовки к централизованному тестированию, единому государственному экзамену по математике. Ч.2/Алт. гос. техн. ун-т им. И.И.Ползунова. – Барнаул: Изд-во АлтГТУ, 2002
3. Вересова Е.Е. и др. Практикум по решению математических задач: Учеб.пособие для пед.ин-тов, - М.: Просвещение, 1979
4. Виленкин Н.Я. и Шварцбурд С.И. Математический анализ. Учеб.пособие для IX-X кл. сред. школ с матем. специализацией. Изд.2-е. М., Просвещение, 1973
5. Виленкин Н.Я. и др. Алгебра и начала акнализа для 10 класса: Учеб.пособие для учащихся шк. и кл. с углубл.изуч. математики/ Н.Я.Виленкин, О.С.Ивашев-Мусатов, С.И.Шварцбурд. – 5-е изд. – М.: Просвещение, 1997
6. Гальперин Г.А., Толпыго А.К. Задачи Московских математических олимпиад М.: Просвещение, 1986.–304с.
7. Голубев В.И. Решение сложных и нестандартных задач по математике.— М.: ИЛЕКСА, 2007. — 252 с.: ил.
8. В. Голубев «Метод замены множителей» «Квант» №4 2006
9. Довбыш Р.И., Потемкина Л.Л., Трегуб Н.Л., Лиманский В.В., Оридорога Л.Л., Кулеско Н.А. Сборник материалов математических олимпиад. – Донецк: ООО ПКФ «БАО», 2005. – 336с.
10. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. 3-е издание, дополненное и переработанное. – М.: Илекса, Харьков: Гимназия, 2002
11. Довбыш Р.И., Потемкина Л.Л., Трегуб Н.Л., Лиманский В.В., Оридорога Л.Л., Кулеско Н.А. Сборник материалов математических олимпиад:906 самых интересных задач и примеров с решениями. – Донецк: ООО ПКФ «БАО», 2005. – 336 с.
12. Единый государственный экзамен: математика: сб.заданий/ [Л.О.Денищева, Г.К.Безрукова, Е.М.Бойченко и др.]. – М.: Просвещение, 2005
13. Задачи повышенной трудности по алгебре и началам анализа: Учеб.пособие для 10-11 кл.сред.шк./ Б.М.Ивлев, А.М.Абрамов, Ю.П.Дудницын, С.И.Шварцбурд. – М.: Просвещение, 1990
14. Ивлев Б.М. и др. Дидактические материалы по алгебре и началам анализа для 10 класса/Б.М.Ивлев, С.М.Саакян, С.И.Шварцбурд.– М.: Просвещение, 1990
15. Ивлев Б.М. и др. Дидактические материалы по алгебре и началам анализа для 11 класса/Б.М.Ивлев, С.М.Саакян, С.И.Шварцбурд. – 2-е изд. – М.: Просвещение, 1995
16. Крамер В.С. Повторяем и систематизируем школьный курс алгебры. – М.: Просвещение, 1990
17. Леманн И. 2 × 2 + шутка.— Мн. : Нар. Асвета, 1985.
18. Прасолов В.В. Задачи по планиметрии. Ч.1. – М.: Наука, 1991. – 320с.
19. Прасолов В.В. Задачи по планиметрии. Ч.2. – М.: Наука, 1991. – 320с.
20. Русаков В. Н. Математические олимпиады младших школьников.— М. : Просвещение, 1998
21. Сборник задач по математике для поступающих в вузы/ В.К.Егерев, В.В.Зайцев, Б.А.Кордемский и др.; под ред.М.И.Сканави. – 6-е изд. – М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2004
22. Труднев В. П. Внекласная работа по математике в начальной школе.— М. : Просвещение, 1987.
23. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления.(В 3-х томах ) . М.: ФИЗМАТЛИТ, 2001. т.1 - 616с
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
Школьный предмет «Математика» предоставляет широкие возможности личностного развития учащихся. Знания, полученные в курсе математики, должны рассматриваться не как самоцель, а как средство развития мышления учащихся, творческих способностей и мотивов деятельности.
Содержание курса математики позволяет учащимся отрабатывать навыкирешения одной и той же задачи, искать пути решения проблемы различнымиспособами.
Как правило, большинство трудностей у учащихся возникает в связи сотсутствием информации по анализу эффективности решения конкретной задачи тем или иным методом, отсутствием навыков творческого применения своих знаний.
Ученик решает ее «традиционным» способом, который, сопряжен с большим объемом работы по преодолению технических трудностей. Обучающиеся испытывают затруднения в переносе и применении знаний и умений одной темы математического курса в решении задач другой темы.
Так формируемые в течение всего курса алгебры и математического анализа знания по теме «Свойства функций» не всегда находят свое рациональное применение учащимися при решении задач.
Обучение учащихся методам и приемам использования свойств функций для решения уравнений и неравенств позволяет на примере конкретной темы школьного курса математики (свойства числовых функций) перейти к применению этих знаний для решения конкретных задач, мотивирую их тем самым к более глубокому изучению свойств функций.
Применение функций при решении алгебраических задач позволяет развивать гибкость и оригинальностьмышления,, математическое воображение и интуицию, способность прогнозировать, позволяет перевести целый класс задач из разряда «сложных» в разряд относительно простых.
Объект исследования - задачи школьного курса математики повышенной сложности.
Предмет исследования - применение свойств функции для решенияуравнений и неравенств.
Цельюкурсовой работы является систематизация методов решения алгебраических задач повышенной сложности.
Введение 3
1. Основные теретические сведения 5
1.2 Понятия и свойства функций, используемые для решения уравнений повышенной сложности 5
1.1 Решение неравенств повышенной сложности методом замены множителей. Теоретическое обоснование метода замены множителей 8
1.3 Замена множителей в некоторых элементарных функциях 11
1.4 Выводы к методу замены множителей 14
2. Примеры решения задач повышенной сложности 17
2.1 Применение области определения и множества значений 17
2.2 Использование ограниченности функций 17
2.3 Использование свойств монотонности функции 18
2.4 Решение неравенств методом замены множителей 19
3. Приложение 20
3.1 Условия задач 20
Решение задач и ответы 21
3.3 Задачи для самостоятельного решения 30
Заключение 32
Cписок литературы 33
Изучение задач физики, техники, геометрии часто приводит к исследованию функций .
Многообразие задач на эту тему охватывает весь курс школьной математики.
В настоящее время задачи связанные с иследованием функций входят в перечень заданий Единого Государственного Экзамена (ЕГЭ). Большие сложности вызывают задачи, содержащие логарифмические, показательные, степенные функции в их различной комбинации. Но эти задачи рассматриваются только на факультативных занятиях, а их решение требует не только знания свойств функций и уравнений, но и умения выполнять алгебраические преобразования, а также высокой логической культуры и хорошей техники исследования.
Поэтому владение приемами решения этих задач можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления. Трудности, возникающие при изучении данного вида задач в основном такие же, как для задач других типов. Кроме того, появляются еще и другие, обусловленные свойствами трансцендентных функций, большое количество формул и методов, используемых при решении этих задач.
Как показывает опыт и многочисленные отклики преподавателей математики при обсуждении различных методов решения задач повышенной сложности, школьниками хорошо усваиваются методы, являющиеся по своей сути алгоритмичными или сводящиеся к некоторой совокупности алгоритмичных действий.
Приведенные примеры решения задач призваны продемонстрировать преимущество применения свойств функций для решения уравнений и неравенств.
1. Беспрозванных В.К., Никифорова Е.Г. Сборник задач для подготовки к централизованному тестированию, единому государственному экзамену по математике. Ч.1/Алт. гос. техн. ун-т им. И.И.Ползунова. – Барнаул: Изд-во АлтГТУ, 2002
2. Беспрозванных В.К., Никифорова Е.Г. Сборник задач для подготовки к централизованному тестированию, единому государственному экзамену по математике. Ч.2/Алт. гос. техн. ун-т им. И.И.Ползунова. – Барнаул: Изд-во АлтГТУ, 2002
3. Вересова Е.Е. и др. Практикум по решению математических задач: Учеб.пособие для пед.ин-тов, - М.: Просвещение, 1979
4. Виленкин Н.Я. и Шварцбурд С.И. Математический анализ. Учеб.пособие для IX-X кл. сред. школ с матем. специализацией. Изд.2-е. М., Просвещение, 1973
5. Виленкин Н.Я. и др. Алгебра и начала акнализа для 10 класса: Учеб.пособие для учащихся шк. и кл. с углубл.изуч. математики/ Н.Я.Виленкин, О.С.Ивашев-Мусатов, С.И.Шварцбурд. – 5-е изд. – М.: Просвещение, 1997
6. Гальперин Г.А., Толпыго А.К. Задачи Московских математических олимпиад М.: Просвещение, 1986.–304с.
7. Голубев В.И. Решение сложных и нестандартных задач по математике.— М.: ИЛЕКСА, 2007. — 252 с.: ил.
8. В. Голубев «Метод замены множителей» «Квант» №4 2006
9. Довбыш Р.И., Потемкина Л.Л., Трегуб Н.Л., Лиманский В.В., Оридорога Л.Л., Кулеско Н.А. Сборник материалов математических олимпиад. – Донецк: ООО ПКФ «БАО», 2005. – 336с.
10. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. 3-е издание, дополненное и переработанное. – М.: Илекса, Харьков: Гимназия, 2002
11. Довбыш Р.И., Потемкина Л.Л., Трегуб Н.Л., Лиманский В.В., Оридорога Л.Л., Кулеско Н.А. Сборник материалов математических олимпиад:906 самых интересных задач и примеров с решениями. – Донецк: ООО ПКФ «БАО», 2005. – 336 с.
12. Единый государственный экзамен: математика: сб.заданий/ [Л.О.Денищева, Г.К.Безрукова, Е.М.Бойченко и др.]. – М.: Просвещение, 2005
13. Задачи повышенной трудности по алгебре и началам анализа: Учеб.пособие для 10-11 кл.сред.шк./ Б.М.Ивлев, А.М.Абрамов, Ю.П.Дудницын, С.И.Шварцбурд. – М.: Просвещение, 1990
14. Ивлев Б.М. и др. Дидактические материалы по алгебре и началам анализа для 10 класса/Б.М.Ивлев, С.М.Саакян, С.И.Шварцбурд.– М.: Просвещение, 1990
15. Ивлев Б.М. и др. Дидактические материалы по алгебре и началам анализа для 11 класса/Б.М.Ивлев, С.М.Саакян, С.И.Шварцбурд. – 2-е изд. – М.: Просвещение, 1995
16. Крамер В.С. Повторяем и систематизируем школьный курс алгебры. – М.: Просвещение, 1990
17. Леманн И. 2 × 2 + шутка.— Мн. : Нар. Асвета, 1985.
18. Прасолов В.В. Задачи по планиметрии. Ч.1. – М.: Наука, 1991. – 320с.
19. Прасолов В.В. Задачи по планиметрии. Ч.2. – М.: Наука, 1991. – 320с.
20. Русаков В. Н. Математические олимпиады младших школьников.— М. : Просвещение, 1998
21. Сборник задач по математике для поступающих в вузы/ В.К.Егерев, В.В.Зайцев, Б.А.Кордемский и др.; под ред.М.И.Сканави. – 6-е изд. – М.: ООО «Издательский дом «ОНИКС 21 век»: ООО «Издательство «Мир и Образование», 2004
22. Труднев В. П. Внекласная работа по математике в начальной школе.— М. : Просвещение, 1987.
23. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления.(В 3-х томах ) . М.: ФИЗМАТЛИТ, 2001. т.1 - 616с
Купить эту работу vs Заказать новую | ||
---|---|---|
0 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—6 дней |
660 ₽ | Цена | от 500 ₽ |
Не подошла эта работа?
В нашей базе 149364 Курсовой работы — поможем найти подходящую