Автор24

Информация о работе

Подробнее о работе

Страница работы

Ответы на билеты к экзамену по математике (интегралы)

  • 45 страниц
  • 2015 год
  • 456 просмотров
  • 0 покупок
Автор работы

allochka.inform

Работаю учителем информатики

400 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

1. Первообразная и неопределённый интеграл.

Первообразная функция.

Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:
F(x) = f(x).

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.
F1(x) = F2(x) + C.

Свойства:
1. Если F– первообразная для функции f, то F + С, где С – константа, также является первообразной для той же функции. Действительно, (F + С)' = F' + С ' = f + 0 = f.
2. Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое.
Действительно, если F1' = f и F2' = f, то (F1 - F2)' = F1 ' – F2' = f - f = 0. Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С.
Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной. Надо помнить, что знак является «неопределенным» в том смысле, что он обозначает какую-нибудь первообразную.
3.
Действительно, пусть F и G – первообразные для функций f и g соответственно. Тогда F + G является первообразной для функции f + g: (F + G)' = F' + G' =f + g.
4.






Неопределенный интеграл.

Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:
F(x) + C.
Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.


Свойства:

1.
2.
3.
4. где u, v, w – некоторые функции от х.
5.

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции.

Теорема (существования первообразной) Всякая непрерывная на промежутке X функция имеет первообразную на этом промежутке.

Примеры «неберущихся» интегралов













Интегралы, дифференциальные уравнения, первообразные

Точно сформулированные ответы на билеты к экзамену по высшей математике

Электронные источники

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Оставляя свои контактные данные и нажимая «Заказать Ответы на вопросы», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Фрагменты работ

1. Первообразная и неопределённый интеграл.

Первообразная функция.

Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:
F(x) = f(x).

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.
F1(x) = F2(x) + C.

Свойства:
1. Если F– первообразная для функции f, то F + С, где С – константа, также является первообразной для той же функции. Действительно, (F + С)' = F' + С ' = f + 0 = f.
2. Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое.
Действительно, если F1' = f и F2' = f, то (F1 - F2)' = F1 ' – F2' = f - f = 0. Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С.
Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной. Надо помнить, что знак является «неопределенным» в том смысле, что он обозначает какую-нибудь первообразную.
3.
Действительно, пусть F и G – первообразные для функций f и g соответственно. Тогда F + G является первообразной для функции f + g: (F + G)' = F' + G' =f + g.
4.






Неопределенный интеграл.

Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:
F(x) + C.
Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.


Свойства:

1.
2.
3.
4. где u, v, w – некоторые функции от х.
5.

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции.

Теорема (существования первообразной) Всякая непрерывная на промежутке X функция имеет первообразную на этом промежутке.

Примеры «неберущихся» интегралов













Интегралы, дифференциальные уравнения, первообразные

Точно сформулированные ответы на билеты к экзамену по высшей математике

Электронные источники

Купить эту работу

Ответы на билеты к экзамену по математике (интегралы)

400 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 200 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

2 мая 2015 заказчик разместил работу

Выбранный эксперт:

Автор работы
allochka.inform
4.7
Работаю учителем информатики
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—4 дня
400 ₽ Цена от 200 ₽

5 Похожих работ

Отзывы студентов

Отзыв Irina Andreeva об авторе allochka.inform 2016-05-17
Ответы на вопросы

Отличная работа!

Общая оценка 5
Отзыв Марина [email protected] об авторе allochka.inform 2017-11-03
Ответы на вопросы

все сдано на отлично! спасибо!

Общая оценка 5
Отзыв Predicador об авторе allochka.inform 2015-03-23
Ответы на вопросы

очень быстро спасибо

Общая оценка 5
Отзыв Алексей Ерасов об авторе allochka.inform 2015-01-22
Ответы на вопросы

Автор выручил

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Численное моделирование двумерной обратной задачи для параболического уравнения

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

Технология изучения многочленов в классах с углубленным изучением математики.

Уникальность: от 40%
Доступность: сразу
2300 ₽
Готовая работа

Задачи и методы аналитической теории чисел

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

Использование различных средств оценивания в контексте подготовки к единому государственному экзамену по математике

Уникальность: от 40%
Доступность: сразу
25000 ₽
Готовая работа

Численный анализ газодинамических течений

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Развитие познавательных УУД обучающихся 5-х классов при обучении решению текстовых задач по математике

Уникальность: от 40%
Доступность: сразу
1650 ₽
Готовая работа

Тестовые задания в теории функций комплексного переменного

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Для МЕХМАТА. Пространства двузначных функций с топологией поточечной сходимости. УНИКАЛЬНОЕ НАУЧНОЕ ИССЛЕДОВАНИЕ.

Уникальность: от 40%
Доступность: сразу
7500 ₽
Готовая работа

Формирование эвристик в процессе обучения младших школьников решению текстовых задач».

Уникальность: от 40%
Доступность: сразу
4000 ₽
Готовая работа

Первообразная в школьном курсе математики: теория, методика преподавания, системы упражнений, контрольно-измерительные материалы

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Геометрия треугольника

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Методы технического анализа на валютном рынке

Уникальность: от 40%
Доступность: сразу
2000 ₽