Отличная работа!
Подробнее о работе
Гарантия сервиса Автор24
Уникальность не ниже 50%
Среди предложенных методов выберите основные методы интегрирования
метод интегрирования по частям
метод замены переменной
метод разложения на множители
метод наименьших квадратов
Определенный интеграл ∫(-1;1) x^2 dx равен:
0
1
-2/3
2/3
Определенный интеграл ∫(-1;1) x^3 dx равен:
0
1
-2/3
2/3
Пусть F(x) и G(x) - первообразные соответственной функций f(x) g(x) на некотором промежутке, тогда к аддитивным свойствам первообразной относятся свойства:
Функция F(x) ± G(х) является первообразной функции f(x) ± g(x)
Функция F(x) / G(x) является первообразной функции f(x) / g(x)
Функция аF(х) является первообразной функции af(x)
Функция F(x) · G(X) является первообразной функции f(x) · g(x)
Среди перечисленных интегралов укажите те, которые вычисляются методом подстановки:
∫ lnxdx
∫ xsinxdx
∫ sin^3xcosxdx
∫ √16-x^2dx
Найдите неопределенный интеграл ∫ 3^3x dx
3^3xln3 / 3 + C
3*3^3x / ln3 + C
3^3x / 3ln3 + C
3^(3x+1) * ln3 + C
Определенный интеграл ∫(1;3) 2+x/x dx равен:
ln9 + C
1 – ln2 + C
2 – 2ln2 + C
2 + ln9 + C
Какая из данных функций не является первообразной для функции f(x) = sin2x?
F(x) = -(1/2)cos2x
F(x) = -2cos2x
F(x) = 2 – (1/2)cos2x
F(x) = 4 – (1/2)cos2x
Пусть F(x) и G(x) - первообразные соответственной функций f(x) g(x) на некотором промежутке, тогда:
Функция F(x) ± G(х) является первообразной функции f(x) ± g(x)
Функция F(x) / G(x) является первообразной функции f(x) / g(x)
Функция аF(х) является первообразной функции af(x)
Функция F(x) · G(X) является первообразной функции f(x) · g(x)
Площадь фигуры, ограниченной линиями y = cosx, y = 0, x = 0, x = π/2 равна …
0
π
2
1
Найдите неопределенный интеграл ∫ dx/∛x^2
3/∛x + C
1/3∛x + C
3∛x + C
-3/∛x + C
Неопределённый интеграл – это совокупность всех ____ функции f(x).
Общий вид определенного интеграла: ∫(a;b) f(x)dx
где f(x) - _____ функция, a и b - пределы интегрирования, dx -дифференциал
Общий вид ____ интеграла: ∫(a;b) f(x)dx
где f(x) - подынтегральная функция, а и b - пределы интегрирования, dx - дифференциал
Найдите неопределенный интеграл ∫ (x^4 + 3 5√x + 1/x^2)dx
4x^3 + 3/5x^(-4/5) – 2x^(-3)
4x^3 + 3/5x^(-4/5) – 2x^(-3) + C
1/5x^5 + 5/2x 5√x – 2/x + C
1/5x^5 + 5/2x 5√x – 1/x + C
Найдите неопределенный интеграл ∫ dx/√x^3
1/2√x + C
2√x + C
2/√x + C
-2/√x + C
______ интеграл - это совокупность всех первообразных функции f(x).
Определенный интеграл вычисляется по формуле ______: ∫(a;b) f(x)dx = F(b) – F(a)
Вычислить площадь фигуры, ограниченной линиями y = 1/√x+1, x = -3/4, x = 0, y = 1. Ответ записать десятичной дробью через запятую
Вычислить площадь фигуры, ограниченной линиями y = x^2 - 2x + 2, y = 2 + 4x – x^2:
Для решения линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами можно использовать методы...
метод неопределенных коэффициентов
метод наименьших квадратов
метод модулей
метод вариации постоянных
При решении уравнения x^2y' = x^2 + y^2 используется замена
y' = u(x)
y = uv
y' = u(y)
y = ux
Дано дифференциальное уравнение y' = 5 - y. Его решением является функция...
y = e^-x + 5
y = e^x - 5
y = e^-x - 5
y = 1/e^x + 5
Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k2 + pk + q = 0. Здесь возможны варианты
комплексно сопряженные k1=α+i·β, k2=α-i·β
действительные и различающиеся корни характеристического уравнения k1≠k2, k1, k2∈R
действительные и совпадающие k1=k2=k, k∈R
целочисленные k1=2α·β, k2=-2α·β
Общее решение уравнения 4y" + 4y' + y = 0
y = C1e^-2x + C2x
y = (C1 + C2x)e^-2x
y = (C1 + C2x)e^-(1/2)x
y = Ce^-(1/2)x
Среди перечисленных уравнений линейными дифференциальными уравнениями первого порядка являются:
3x + 4y - 2 + y'(x - 1) = 0
y' + xy = x^3
y' = 1-2x / y^2
y / x^2+y^2 dx – x / x^2+y^2 dy = 0
При решении уравнения x^2y' + 2y = x^3 используется замена
y = ux
y' = u(x)
y = uv
y' = u(y)
Среди перечисленных уравнений выберите дифференциальные уравнения с разделяющимися переменными:
y' + xy = x^3
y' = 1-2x / y^2
y' = x-y / x+y
y'√1-x^2 = 1 + y^2
Среди перечисленных дифференциальных уравнений уравнениями первого порядка являются:
2x d^2y/dx^2 + x dy/dx + y = 0
x d^2y/dx^2 + xy dy/dx + x^2 = 0
y^2 dy/dx + x = 0
x^3y' + 8y – x + 5 = 0
Общий интеграл дифференциального уравнения dy/y^2 = dx/1+x^2 имеет вид ...
-1/y = arctx + C
-1/y = -ln(1+x^2) + C
-1/y = arctg1/x + C
1/y = ln(1+x^2) + C
Дифференциальное уравнение вида y' + p(x)y = f(x)y^α называется уравнением ____
y = C1e^2x + C2e^-x - общее решение дифференциального уравнения
y" - y' - 2y = 0
y" - 3y' - 2y = 0
y" + y' - 2y = 0
y" + 2y' - y = 0
Уравнение вида F(y',y,x) = 0 называется ______ уравнением первого порядка
Дифференциальное уравнение вида y' + p(x)y = f(x) называется _____ дифференциальным уравнением первого порядка
Общее решение дифференциального уравнения y"' = 2x + 1 имеет вид:
y = 1/12 x^4 + 1/6 x^3 + C1/2 x^2 + C2x + C3
y = 1/12 x^4 + 1/6 x^3 + C
y = x^4 + x^3 + C1x^2 + C2x + C3
y = 1/24 x^4 + 1/6 x^3 + C1/2 x^2 + C2x + C3
Для решения линейного однородного дифференциального уравнения второго порядка у" + рy' + qy = 0 необходимо составить и решить ____ уравнение k^2 + pk + q = 0
Задача отыскания частного решения ДУ, удовлетворяющего заданному начальному условию называется задачей ____
Если при решении линейного однородного дифференциального уравнения второго порядка у" + py' + q = 0 дискриминант характеристического уравнения у" + py' + qy = 0 оказался равен нулю, то общее решение однородного ДУ имеет вид
y(x)00 = c1e^k1x + c2e^k2x
y(x)00 = c1e^αx cosβx + c2e^αx sinβx
y(x)00 = c1e^kx + c2xe^kx
Дано дифференциальное уравнение y" + 6y' + 5y = 0, удовлетворяющее начальным условиям y(0) = 1, y'(0) = -1. В ответе указать значение y(ln2). (Ответ записать цифрой)
Выяснить, при каком значении параметра α функция y = e^(x^2 + x^4/α) является решением уравнения y' = x^3y + 2xy.
(Ответ записать цифрой)
Порядок дифференциального уравнения y'' - y'tgx = cosx можно понизить заменой...
y' = z(y)
y'' = z(x)
y' = z(x)
производную y заменить на функцию от x
При решении уравнения у'' - y' = y^2 используется замена
y = ux
y' = u(y)
y = uv
y' = u(x)
К дифференциальным уравнениям высшего порядка относятся
дифференциальное уравнение Бернулли
линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y(n)+fn-1·y(n-1) +…+f1·y'+f0·y=0 и y(n)+fn-1·y(n-1)+…
дифференциальные уравнения, допускающие понижение порядка
простейшие дифференциальные уравнения первого порядка вида y'=f(x)
Линейные однородные дифференциальные уравнения высших порядков с постоянными коэффициентами y(n)+fn-1·y(n-1)+…+f1·y'+f0. Решение уравнений данного вида предполагает выполнение следующих простых шагов:
находим интеграл характеристического уравнения
находим корни характеристического уравнения
исключаем их уравнения переменные
записываем общее решение в стандартной форме
Линейные неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y(n)+fn-1·y(n-1) +…+f1·y'+f0·y=f(x). Решение уравнений данного вида предполагает выполнение следующих простых шагов:
исключаем их уравнения переменные
записываем общее решение в стандартной форме
находим корни характеристического уравнения
находим интеграл характеристического уравнения
Общим решением линейного дифференциального уравнения с постоянными коэффициентами и характеристическими корнями k1 = k2 = 5, k3 = -2 является …
y = C1e^5x + C2e^-2x
y = (C1 + C2x)e^5x + C3(1/e^2x)
y = C1sin5x + C2cos5x - C3sin2x + C4cos2x
y = (C1 + C2x)e^5x + C3e^-2x
Решением задачи Коши дифференциального уравнения y" = 2x, y(0) = 1, y'(0) = 0 является ...
y = x^3/3 + 1
y = 2x^2 + 5x + 1
y = x^3/6 + 2x + 1
y = (x^3 + 3)/3
Укажите тип дифференциального уравнения y' = y/x - 1
линейное
однородное
в полных дифференциалах
с разделяющимися переменными
Уравнением Бернулли является...
y'√(1-x^2) = 1 + y^2
y' - yctgx = y^3/sinx
y' + 2x/y = x^3
y' + xy = x^3
Среди перечисленных дифференциальных уравнений уравнениями первого порядка являются:
sinx(d^2y/dx^2) + cosx(dy/dx) = 2x
y' = (x + y)/(x - y)
y"' - xy' = x^2
dy/dx = y√(1 – x^2)
Если у(х) - решение уравнения e^-2x y' = e^3, удовлетворяющее начальному условию у(-1,5)=0,5, тогда у(0)=... (Ответ записать цифрами с точностью до целых)
Дано дифференциальное уравнение y' = (2k - 2)x^3, тогда функция y = x^4 - 3 является его решением при k равном...
Совокупность пар (х, у) значений х и у, при которых определена функция z = f(x,y), называется
областью определения этой функции
областью существования частной производной функции
начальной областью
областью существования этой функции
Значение производной zxy'' функции z = 3x^2·siny в точке (1,0) равно....
3
0
6
6sin1
Для функции z = 2xy + y^2 справедливы отношения
∂z/∂x - 2y = 0
∂z/∂y - 2y = 2x
∂z/∂x + ∂z/∂y = 0
∂z/∂x = ∂z/∂y
Среди перечисленных ниже утверждений выберите то(-е), которое(-ые) является(-ются) истинным(-и)
если точка Р является внутренней точкой области, то в любой её окрестности есть точки, принадлежащие этой области
если точка Р является внутренней точкой области, то можно указать её окрестность, содержащую только точки, принадлежащие этой области
если в любой окрестности точки Р есть точки, принадлежащие этой области, то точка Р является граничной точкой области
если точка Р является внутренней точкой области, то в любой её окрестности есть точки, не принадлежащие этой области
В математическом анализе частная производная - это
одно из обобщений понятия производной на случай функции нескольких переменных
предел отношения приращения функции по сумме переменных к приращению переменных
предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к нулю
предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к бесконечности
Геометрическое изображение функции двух переменных может иметь вид
прямой
сферы
окружности
гиперболоида
Укажите частное приращение функции f(x;y) по переменной y:
f(x+∆x; y+∆y) - f(x; y)
f(x+∆x; y) - f(x; y)
f(x+∆x; y+∆y)
f(x; y+∆y) - f(x; y)
Из перечисленных ниже вариантов ответа выберите правильный вариант. Область изменения (значений) функции двух переменных z = x + y^2 равна
R
(– ∞; 0) U (0; ∞)
[0; ∞)
(0; ∞)
Связь между производной и интегралом в анализе функций многих переменных воплощена в известных теоремах интегрирования векторного анализа
теорема Стокса
теорема Беллмана
теорема Остроградского-Гаусса
теорема Ньютона-Лейбница
Зная, что d²z = – sinxsinydx² + 2cosxcosydxdy – sinxsinydy², найти zxx''
sinxsiny
cosxcosy
-cosxcosy
-sinxsiny
Установите последовательность этапов нахождения наибольшего и наименьшего значений функции нескольких переменных в ограниченной замкнутой области D
Сравнить все найденные значения и выбрать из них наименьшее и наибольшее.
Найти область определения функции z = f(x,y)
Определить, включена ли область D в область определения функции
Найти наибольшие и наименьшие значения функции z = f(x,y) на границах области D.
Найти критические точки функции z = f(x,y) и отобрать из них те, которые являются внутренними точками области D. Вычислить значение функции z в этих точках.
Вычислить предел функции: lim(x→1, y→1) sin(x+2y-3) / ((x+2y)²-9). Ответ записать в виде обыкновенной дроби, например, 32/5
Вычислить предел функции: lim(x→0, y→0) (x-y)²·sin(1/(x+y))·cos(x/(x-y)). Ответ записать цифрой.
Для функции z = x² ln(x + y) найти zxy''
2x / (x+y)
x(x+2y) / (x+y)
x(x+2y) / (x+y)²
2y / (x+y)²
Если для функции f(x;y) справедливо fx'(x0;y0) = fy'(x0;y0) = 0, то можно утверждать, что
(x0;y0) - точка разрыва функции
(x0;y0) - граничная точка функции
(x0;y0) - стационарная точка функции
(x0;y0) - точка экстремума функции
Вычислить предел функции: lim(x→0, y→0) (tg²3y-sinx) / (√(9+sinx-tg²3y) - 3). Ответ записать цифрой.
Градиент функции z = x^2 + 3y^3 - xy в точке A(1;1) равен
(13;-2)
(1;8)
(8;1)
(1;1)
Вычислить предел функции: lim(x→1, y→-3) ln(3+x²+y) / (2+y+x²). Ответ записать цифрой.
Точкой локального экстремума функции z = x^3 - 15xy + y^3 является… Ответ записать цифрами в круглых скобках через точку с запятой, например, (-3;3)
Найти количество точек, в которых z = x^2 + y^2 достигает наибольшего значения в области, задаваемой неравенством x^2 + y^2 ≤ 1. Ответ записать цифрой.
Ряд 1/2 + 1/4 + 1/6 +1/8 + …, полученный умножением членов гармонического ряда Σ(n=1, ∞) 1/n на 1/2
сходится
может сходиться или расходиться
расходится
другой ответ
Если предел общего члена числового ряда lim(n→∞) uₙ ≠ 0, то ряд
сходится
может сходиться или расходиться
другой ответ
расходится
Найти интервал сходимости ряда Σ(n=1, ∞) (2x)^n / ³√n (в ответе границы указать через «;», записать в виде десятичных дробей без пробелов)
Установите соответствие между знакопеременными рядами и видами сходимости.
Σ(n=1, ∞) (-1)^n / (n+4)!
Σ(n=1, ∞) (-1)^n / n+5
Σ(n=1, ∞) (-1)^n g^n
расходится
условно сходится
абсолютно сходится
Установите соответствие между знакопеременными рядами и видами сходимости.
Σ(n=1, ∞) (-1)^n+1 1 / (2n - √n)
Σ(n=1, ∞) (-1)^n+1 1 / nln^2 n
Σ(n=1, ∞) (-1)^n (3n^2 - 1) / (5 + 2n^2)
расходится
условно сходится
абсолютно сходится
Если ряд из модулей членов знакопеременного ряда расходится, то знакопеременный ряд:
сходится абсолютно
сходится условно
может сходиться или расходиться
расходится
Для каких рядов не выполняется необходимый признак сходимости?
Σ(n=1, ∞) n^2+1 / 10n
Σ(n=1, ∞) 1 / n^2
Σ(n=1, ∞) √5n+2 / 3
Σ(n=1, ∞) n-1 / 2n^2+1
Найти интервал сходимости ряда Σ(n=1, ∞) x^2n^2 / n^n (в ответе границы указать через «;» без пробелов)
Признак Лейбница: Если члены _____ ряда монотонно убывают по модулю, то ряд сходится.
Если признак ______ не дает нам ответа на вопрос о сходимости ряда, то признак Даламбера тоже не даст ответа.
Если признак Коши не дает нам ответа на вопрос о сходимости ряда, то признак ____ тоже не даст ответа.
Радиус сходимости степенного ряда Σ(n=1, ∞) (-1^n) x^n / 2n*n! равен
2
∞
1
0
Какие из предложенных рядов сходятся по признаку Лейбница?
Σ(n=1, ∞) (-1)^n+1
Σ(n=1, ∞) (-1)^n / n!
Σ(n=1, ∞) (-1)^n 2n / 3n-1
Σ(n=1, ∞) 3 / 2n^2
Установите соответствие между знакопеременными рядами и видами сходимости.
Σ(n=1, ∞) (-1)^n+1 3*7*…*(4n-1) / 5*8*…*(3n+2)
Σ(n=1, ∞) (-1)^n / (3n-2)!
Σ(n=1, ∞) (-1)^n (2n+1) / n(n+2)
расходится
условно сходится
абсолютно сходится
Рассмотрим два положительных числовых ряда Σ(n=1, ∞) an и Σ(n=1, ∞) bn. Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу A: lim(n→∞) an/bn = A, то оба ряда сходятся или расходятся одновременно. Это _____ признак сравнения числовых положительных рядов
Ряд Σ(n=1, ∞) 1/n называется ____ рядом.
Радиус сходимости степенного ряда Σ(∞, n=0) anx^n равен 4. Тогда интервал сходимости имеет вид
(-4;4)
(0;4)
(-2;2)
(-4;0)
Предел какого выражения используется в признаке Коши сходимости числовых рядов?
lim(n→∞) √un
lim(n→∞) (un)^n
lim(n→∞) un
lim(n→∞) n√un
Какими свойствами обладает функция у = f(x), применяемая в интегральном признаке сходимости рядов?
убывающая
отрицательная
непрерывная
положительная
Какие ряды, относящиеся к примерам обобщенного гармонического ряда расходятся
Σ(n=1, ∞) 1 / √n
все ряды
Σ(n=1, ∞) 1 / √n^3
Σ(n=1, ∞) 1 / ³√n
Для каких рядов не выполняется признак Лейбница?
Σ(n=1, ∞) (-1)^n+1
Σ(n=1, ∞) (-1)^n / n!
Σ(n=1, ∞) (-1)^n / n^2
Σ(n=1, ∞) (-1)^n * 7n / 9n+1
Среди предложенных утверждений выберите верные
если n-ый член числового ряда Σ(n=1, ∞) un стремится к 0 при n→∞, то ряд Σ(n=1, ∞) un сходится
если n-ый член числового ряда Σ(n=1, ∞) un не стремится к 0 при n→∞, то числовой ряд Σ(n=1, ∞) un расходится
если числовой ряд Σ(n=1, ∞) un сходится, то n-ый член ряда стремится к 0 при n→∞
если числовой ряд Σ(n=1, ∞) un сходится, то n-ый член ряда un равен 0
Найти интервал сходимости ряда Σ(n=1, ∞) (x-3)^n / 3^n+1 (в ответе границы указать через «;» без пробелов)
Определите, какой из рядов сходится по признаку Даламбера
Σ(n=1, ∞) n! / 5^n
Σ(n=1, ∞) 4^n / n^2
Σ(n=1, ∞) 2 / 3n^2
Σ(n=1, ∞) n^2 / n!
Если предел отношения последующего члена к предыдущему члену знакоположительного числового ряда ранен 2, то
ряд сходится
ряд расходится
другой ответ
бесконечная сумма ряда равна бесконечности или суммы ряда вообще не существует
Радиус сходимости степенного ряда Σ(n=1, ∞) n!(x-2)^n равен
0
2
∞
-∞
Установите соответствие между знакопеременными рядами и видами сходимости.
Σ(n=1, ∞) (-1)^n * n
Σ(n=1, ∞) (-1)^n-1 1 / n^2
Σ(n=1, ∞) (-1)^n-1 / ln(n+1)
абсолютно сходится
условно сходится
расходится
Для обобщенного гармонического ряда верны следующие утверждения
его n-ый член всегда стремится к 0 при n → ∞
Данный ряд сходится при α > 1
данный ряд расходится при α ≤ 1
данный ряд знакопостоянен
Укажите сходящиеся числовые ряды
Σ(n=1, ∞) 1 / n^3+7n
Σ(n=1, ∞) 1 / 8√n-4
Σ(n=1, ∞) 1 / 3√n^5-5n^4+2
Σ(n=1, ∞) 1 / 4√n^3+n
Найти интервал сходимости ряда Σ(n=1, ∞) (-1)^n (x-2)^2n / n (в ответе границы указать через «;» без пробелов)
Ряд Σ(n=1, ∞) n^2 / n! по признаку Даламбера
другой ответ
сходится
расходится
может сходиться или расходиться
Определите, для каких рядов неприменим признак Лейбница
Σ 1 / 3n+1
Σ(n=1, ∞) (-1)^n / 2n-1
1/2 – 1/3 – 1/4 + 1/5 – 1/6 – 1/7 + …
Σ (-1)^n+1 / n^2
Средний балл за предмет 75 и выше, на оценку "Хорошо". В зависимости от комбинации вопросов в вашем варианте теста возможна вариативность итогового балла в небольших пределах.
После оплаты вы сможете скачать файл с ответами. Все вопросы из файла указаны ниже в содержании.
Правильные ответы на вопросы выделены зеленым цветом.
Чтобы найти нужный вопрос в файле, необходимо нажать одновременно Ctrl+F. Становится активным окно поиска. Вводите несколько слов из интересующего вопроса. Нажимаете Enter. Система выдает результаты поиска и нужные слова выделяются цветом.
ВАЖНО: Вы покупаете готовую работу, а именно ответы на те вопросы, которые перечислены ниже. Перед покупкой убедитесь, что ваши вопросы совпадают с ними. Если вашего вопроса нет в этом списке, значит его нет и в файле с правильными ответами.
Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям
Среди предложенных методов выберите основные методы интегрирования
метод интегрирования по частям
метод замены переменной
метод разложения на множители
метод наименьших квадратов
Определенный интеграл ∫(-1;1) x^2 dx равен:
0
1
-2/3
2/3
Определенный интеграл ∫(-1;1) x^3 dx равен:
0
1
-2/3
2/3
Пусть F(x) и G(x) - первообразные соответственной функций f(x) g(x) на некотором промежутке, тогда к аддитивным свойствам первообразной относятся свойства:
Функция F(x) ± G(х) является первообразной функции f(x) ± g(x)
Функция F(x) / G(x) является первообразной функции f(x) / g(x)
Функция аF(х) является первообразной функции af(x)
Функция F(x) · G(X) является первообразной функции f(x) · g(x)
Среди перечисленных интегралов укажите те, которые вычисляются методом подстановки:
∫ lnxdx
∫ xsinxdx
∫ sin^3xcosxdx
∫ √16-x^2dx
Найдите неопределенный интеграл ∫ 3^3x dx
3^3xln3 / 3 + C
3*3^3x / ln3 + C
3^3x / 3ln3 + C
3^(3x+1) * ln3 + C
Определенный интеграл ∫(1;3) 2+x/x dx равен:
ln9 + C
1 – ln2 + C
2 – 2ln2 + C
2 + ln9 + C
Какая из данных функций не является первообразной для функции f(x) = sin2x?
F(x) = -(1/2)cos2x
F(x) = -2cos2x
F(x) = 2 – (1/2)cos2x
F(x) = 4 – (1/2)cos2x
Пусть F(x) и G(x) - первообразные соответственной функций f(x) g(x) на некотором промежутке, тогда:
Функция F(x) ± G(х) является первообразной функции f(x) ± g(x)
Функция F(x) / G(x) является первообразной функции f(x) / g(x)
Функция аF(х) является первообразной функции af(x)
Функция F(x) · G(X) является первообразной функции f(x) · g(x)
Площадь фигуры, ограниченной линиями y = cosx, y = 0, x = 0, x = π/2 равна …
0
π
2
1
Найдите неопределенный интеграл ∫ dx/∛x^2
3/∛x + C
1/3∛x + C
3∛x + C
-3/∛x + C
Неопределённый интеграл – это совокупность всех ____ функции f(x).
Общий вид определенного интеграла: ∫(a;b) f(x)dx
где f(x) - _____ функция, a и b - пределы интегрирования, dx -дифференциал
Общий вид ____ интеграла: ∫(a;b) f(x)dx
где f(x) - подынтегральная функция, а и b - пределы интегрирования, dx - дифференциал
Найдите неопределенный интеграл ∫ (x^4 + 3 5√x + 1/x^2)dx
4x^3 + 3/5x^(-4/5) – 2x^(-3)
4x^3 + 3/5x^(-4/5) – 2x^(-3) + C
1/5x^5 + 5/2x 5√x – 2/x + C
1/5x^5 + 5/2x 5√x – 1/x + C
Найдите неопределенный интеграл ∫ dx/√x^3
1/2√x + C
2√x + C
2/√x + C
-2/√x + C
______ интеграл - это совокупность всех первообразных функции f(x).
Определенный интеграл вычисляется по формуле ______: ∫(a;b) f(x)dx = F(b) – F(a)
Вычислить площадь фигуры, ограниченной линиями y = 1/√x+1, x = -3/4, x = 0, y = 1. Ответ записать десятичной дробью через запятую
Вычислить площадь фигуры, ограниченной линиями y = x^2 - 2x + 2, y = 2 + 4x – x^2:
Для решения линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами можно использовать методы...
метод неопределенных коэффициентов
метод наименьших квадратов
метод модулей
метод вариации постоянных
При решении уравнения x^2y' = x^2 + y^2 используется замена
y' = u(x)
y = uv
y' = u(y)
y = ux
Дано дифференциальное уравнение y' = 5 - y. Его решением является функция...
y = e^-x + 5
y = e^x - 5
y = e^-x - 5
y = 1/e^x + 5
Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k2 + pk + q = 0. Здесь возможны варианты
комплексно сопряженные k1=α+i·β, k2=α-i·β
действительные и различающиеся корни характеристического уравнения k1≠k2, k1, k2∈R
действительные и совпадающие k1=k2=k, k∈R
целочисленные k1=2α·β, k2=-2α·β
Общее решение уравнения 4y" + 4y' + y = 0
y = C1e^-2x + C2x
y = (C1 + C2x)e^-2x
y = (C1 + C2x)e^-(1/2)x
y = Ce^-(1/2)x
Среди перечисленных уравнений линейными дифференциальными уравнениями первого порядка являются:
3x + 4y - 2 + y'(x - 1) = 0
y' + xy = x^3
y' = 1-2x / y^2
y / x^2+y^2 dx – x / x^2+y^2 dy = 0
При решении уравнения x^2y' + 2y = x^3 используется замена
y = ux
y' = u(x)
y = uv
y' = u(y)
Среди перечисленных уравнений выберите дифференциальные уравнения с разделяющимися переменными:
y' + xy = x^3
y' = 1-2x / y^2
y' = x-y / x+y
y'√1-x^2 = 1 + y^2
Среди перечисленных дифференциальных уравнений уравнениями первого порядка являются:
2x d^2y/dx^2 + x dy/dx + y = 0
x d^2y/dx^2 + xy dy/dx + x^2 = 0
y^2 dy/dx + x = 0
x^3y' + 8y – x + 5 = 0
Общий интеграл дифференциального уравнения dy/y^2 = dx/1+x^2 имеет вид ...
-1/y = arctx + C
-1/y = -ln(1+x^2) + C
-1/y = arctg1/x + C
1/y = ln(1+x^2) + C
Дифференциальное уравнение вида y' + p(x)y = f(x)y^α называется уравнением ____
y = C1e^2x + C2e^-x - общее решение дифференциального уравнения
y" - y' - 2y = 0
y" - 3y' - 2y = 0
y" + y' - 2y = 0
y" + 2y' - y = 0
Уравнение вида F(y',y,x) = 0 называется ______ уравнением первого порядка
Дифференциальное уравнение вида y' + p(x)y = f(x) называется _____ дифференциальным уравнением первого порядка
Общее решение дифференциального уравнения y"' = 2x + 1 имеет вид:
y = 1/12 x^4 + 1/6 x^3 + C1/2 x^2 + C2x + C3
y = 1/12 x^4 + 1/6 x^3 + C
y = x^4 + x^3 + C1x^2 + C2x + C3
y = 1/24 x^4 + 1/6 x^3 + C1/2 x^2 + C2x + C3
Для решения линейного однородного дифференциального уравнения второго порядка у" + рy' + qy = 0 необходимо составить и решить ____ уравнение k^2 + pk + q = 0
Задача отыскания частного решения ДУ, удовлетворяющего заданному начальному условию называется задачей ____
Если при решении линейного однородного дифференциального уравнения второго порядка у" + py' + q = 0 дискриминант характеристического уравнения у" + py' + qy = 0 оказался равен нулю, то общее решение однородного ДУ имеет вид
y(x)00 = c1e^k1x + c2e^k2x
y(x)00 = c1e^αx cosβx + c2e^αx sinβx
y(x)00 = c1e^kx + c2xe^kx
Дано дифференциальное уравнение y" + 6y' + 5y = 0, удовлетворяющее начальным условиям y(0) = 1, y'(0) = -1. В ответе указать значение y(ln2). (Ответ записать цифрой)
Выяснить, при каком значении параметра α функция y = e^(x^2 + x^4/α) является решением уравнения y' = x^3y + 2xy.
(Ответ записать цифрой)
Порядок дифференциального уравнения y'' - y'tgx = cosx можно понизить заменой...
y' = z(y)
y'' = z(x)
y' = z(x)
производную y заменить на функцию от x
При решении уравнения у'' - y' = y^2 используется замена
y = ux
y' = u(y)
y = uv
y' = u(x)
К дифференциальным уравнениям высшего порядка относятся
дифференциальное уравнение Бернулли
линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y(n)+fn-1·y(n-1) +…+f1·y'+f0·y=0 и y(n)+fn-1·y(n-1)+…
дифференциальные уравнения, допускающие понижение порядка
простейшие дифференциальные уравнения первого порядка вида y'=f(x)
Линейные однородные дифференциальные уравнения высших порядков с постоянными коэффициентами y(n)+fn-1·y(n-1)+…+f1·y'+f0. Решение уравнений данного вида предполагает выполнение следующих простых шагов:
находим интеграл характеристического уравнения
находим корни характеристического уравнения
исключаем их уравнения переменные
записываем общее решение в стандартной форме
Линейные неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y(n)+fn-1·y(n-1) +…+f1·y'+f0·y=f(x). Решение уравнений данного вида предполагает выполнение следующих простых шагов:
исключаем их уравнения переменные
записываем общее решение в стандартной форме
находим корни характеристического уравнения
находим интеграл характеристического уравнения
Общим решением линейного дифференциального уравнения с постоянными коэффициентами и характеристическими корнями k1 = k2 = 5, k3 = -2 является …
y = C1e^5x + C2e^-2x
y = (C1 + C2x)e^5x + C3(1/e^2x)
y = C1sin5x + C2cos5x - C3sin2x + C4cos2x
y = (C1 + C2x)e^5x + C3e^-2x
Решением задачи Коши дифференциального уравнения y" = 2x, y(0) = 1, y'(0) = 0 является ...
y = x^3/3 + 1
y = 2x^2 + 5x + 1
y = x^3/6 + 2x + 1
y = (x^3 + 3)/3
Укажите тип дифференциального уравнения y' = y/x - 1
линейное
однородное
в полных дифференциалах
с разделяющимися переменными
Уравнением Бернулли является...
y'√(1-x^2) = 1 + y^2
y' - yctgx = y^3/sinx
y' + 2x/y = x^3
y' + xy = x^3
Среди перечисленных дифференциальных уравнений уравнениями первого порядка являются:
sinx(d^2y/dx^2) + cosx(dy/dx) = 2x
y' = (x + y)/(x - y)
y"' - xy' = x^2
dy/dx = y√(1 – x^2)
Если у(х) - решение уравнения e^-2x y' = e^3, удовлетворяющее начальному условию у(-1,5)=0,5, тогда у(0)=... (Ответ записать цифрами с точностью до целых)
Дано дифференциальное уравнение y' = (2k - 2)x^3, тогда функция y = x^4 - 3 является его решением при k равном...
Совокупность пар (х, у) значений х и у, при которых определена функция z = f(x,y), называется
областью определения этой функции
областью существования частной производной функции
начальной областью
областью существования этой функции
Значение производной zxy'' функции z = 3x^2·siny в точке (1,0) равно....
3
0
6
6sin1
Для функции z = 2xy + y^2 справедливы отношения
∂z/∂x - 2y = 0
∂z/∂y - 2y = 2x
∂z/∂x + ∂z/∂y = 0
∂z/∂x = ∂z/∂y
Среди перечисленных ниже утверждений выберите то(-е), которое(-ые) является(-ются) истинным(-и)
если точка Р является внутренней точкой области, то в любой её окрестности есть точки, принадлежащие этой области
если точка Р является внутренней точкой области, то можно указать её окрестность, содержащую только точки, принадлежащие этой области
если в любой окрестности точки Р есть точки, принадлежащие этой области, то точка Р является граничной точкой области
если точка Р является внутренней точкой области, то в любой её окрестности есть точки, не принадлежащие этой области
В математическом анализе частная производная - это
одно из обобщений понятия производной на случай функции нескольких переменных
предел отношения приращения функции по сумме переменных к приращению переменных
предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к нулю
предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к бесконечности
Геометрическое изображение функции двух переменных может иметь вид
прямой
сферы
окружности
гиперболоида
Укажите частное приращение функции f(x;y) по переменной y:
f(x+∆x; y+∆y) - f(x; y)
f(x+∆x; y) - f(x; y)
f(x+∆x; y+∆y)
f(x; y+∆y) - f(x; y)
Из перечисленных ниже вариантов ответа выберите правильный вариант. Область изменения (значений) функции двух переменных z = x + y^2 равна
R
(– ∞; 0) U (0; ∞)
[0; ∞)
(0; ∞)
Связь между производной и интегралом в анализе функций многих переменных воплощена в известных теоремах интегрирования векторного анализа
теорема Стокса
теорема Беллмана
теорема Остроградского-Гаусса
теорема Ньютона-Лейбница
Зная, что d²z = – sinxsinydx² + 2cosxcosydxdy – sinxsinydy², найти zxx''
sinxsiny
cosxcosy
-cosxcosy
-sinxsiny
Установите последовательность этапов нахождения наибольшего и наименьшего значений функции нескольких переменных в ограниченной замкнутой области D
Сравнить все найденные значения и выбрать из них наименьшее и наибольшее.
Найти область определения функции z = f(x,y)
Определить, включена ли область D в область определения функции
Найти наибольшие и наименьшие значения функции z = f(x,y) на границах области D.
Найти критические точки функции z = f(x,y) и отобрать из них те, которые являются внутренними точками области D. Вычислить значение функции z в этих точках.
Вычислить предел функции: lim(x→1, y→1) sin(x+2y-3) / ((x+2y)²-9). Ответ записать в виде обыкновенной дроби, например, 32/5
Вычислить предел функции: lim(x→0, y→0) (x-y)²·sin(1/(x+y))·cos(x/(x-y)). Ответ записать цифрой.
Для функции z = x² ln(x + y) найти zxy''
2x / (x+y)
x(x+2y) / (x+y)
x(x+2y) / (x+y)²
2y / (x+y)²
Если для функции f(x;y) справедливо fx'(x0;y0) = fy'(x0;y0) = 0, то можно утверждать, что
(x0;y0) - точка разрыва функции
(x0;y0) - граничная точка функции
(x0;y0) - стационарная точка функции
(x0;y0) - точка экстремума функции
Вычислить предел функции: lim(x→0, y→0) (tg²3y-sinx) / (√(9+sinx-tg²3y) - 3). Ответ записать цифрой.
Градиент функции z = x^2 + 3y^3 - xy в точке A(1;1) равен
(13;-2)
(1;8)
(8;1)
(1;1)
Вычислить предел функции: lim(x→1, y→-3) ln(3+x²+y) / (2+y+x²). Ответ записать цифрой.
Точкой локального экстремума функции z = x^3 - 15xy + y^3 является… Ответ записать цифрами в круглых скобках через точку с запятой, например, (-3;3)
Найти количество точек, в которых z = x^2 + y^2 достигает наибольшего значения в области, задаваемой неравенством x^2 + y^2 ≤ 1. Ответ записать цифрой.
Ряд 1/2 + 1/4 + 1/6 +1/8 + …, полученный умножением членов гармонического ряда Σ(n=1, ∞) 1/n на 1/2
сходится
может сходиться или расходиться
расходится
другой ответ
Если предел общего члена числового ряда lim(n→∞) uₙ ≠ 0, то ряд
сходится
может сходиться или расходиться
другой ответ
расходится
Найти интервал сходимости ряда Σ(n=1, ∞) (2x)^n / ³√n (в ответе границы указать через «;», записать в виде десятичных дробей без пробелов)
Установите соответствие между знакопеременными рядами и видами сходимости.
Σ(n=1, ∞) (-1)^n / (n+4)!
Σ(n=1, ∞) (-1)^n / n+5
Σ(n=1, ∞) (-1)^n g^n
расходится
условно сходится
абсолютно сходится
Установите соответствие между знакопеременными рядами и видами сходимости.
Σ(n=1, ∞) (-1)^n+1 1 / (2n - √n)
Σ(n=1, ∞) (-1)^n+1 1 / nln^2 n
Σ(n=1, ∞) (-1)^n (3n^2 - 1) / (5 + 2n^2)
расходится
условно сходится
абсолютно сходится
Если ряд из модулей членов знакопеременного ряда расходится, то знакопеременный ряд:
сходится абсолютно
сходится условно
может сходиться или расходиться
расходится
Для каких рядов не выполняется необходимый признак сходимости?
Σ(n=1, ∞) n^2+1 / 10n
Σ(n=1, ∞) 1 / n^2
Σ(n=1, ∞) √5n+2 / 3
Σ(n=1, ∞) n-1 / 2n^2+1
Найти интервал сходимости ряда Σ(n=1, ∞) x^2n^2 / n^n (в ответе границы указать через «;» без пробелов)
Признак Лейбница: Если члены _____ ряда монотонно убывают по модулю, то ряд сходится.
Если признак ______ не дает нам ответа на вопрос о сходимости ряда, то признак Даламбера тоже не даст ответа.
Если признак Коши не дает нам ответа на вопрос о сходимости ряда, то признак ____ тоже не даст ответа.
Радиус сходимости степенного ряда Σ(n=1, ∞) (-1^n) x^n / 2n*n! равен
2
∞
1
0
Какие из предложенных рядов сходятся по признаку Лейбница?
Σ(n=1, ∞) (-1)^n+1
Σ(n=1, ∞) (-1)^n / n!
Σ(n=1, ∞) (-1)^n 2n / 3n-1
Σ(n=1, ∞) 3 / 2n^2
Установите соответствие между знакопеременными рядами и видами сходимости.
Σ(n=1, ∞) (-1)^n+1 3*7*…*(4n-1) / 5*8*…*(3n+2)
Σ(n=1, ∞) (-1)^n / (3n-2)!
Σ(n=1, ∞) (-1)^n (2n+1) / n(n+2)
расходится
условно сходится
абсолютно сходится
Рассмотрим два положительных числовых ряда Σ(n=1, ∞) an и Σ(n=1, ∞) bn. Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу A: lim(n→∞) an/bn = A, то оба ряда сходятся или расходятся одновременно. Это _____ признак сравнения числовых положительных рядов
Ряд Σ(n=1, ∞) 1/n называется ____ рядом.
Радиус сходимости степенного ряда Σ(∞, n=0) anx^n равен 4. Тогда интервал сходимости имеет вид
(-4;4)
(0;4)
(-2;2)
(-4;0)
Предел какого выражения используется в признаке Коши сходимости числовых рядов?
lim(n→∞) √un
lim(n→∞) (un)^n
lim(n→∞) un
lim(n→∞) n√un
Какими свойствами обладает функция у = f(x), применяемая в интегральном признаке сходимости рядов?
убывающая
отрицательная
непрерывная
положительная
Какие ряды, относящиеся к примерам обобщенного гармонического ряда расходятся
Σ(n=1, ∞) 1 / √n
все ряды
Σ(n=1, ∞) 1 / √n^3
Σ(n=1, ∞) 1 / ³√n
Для каких рядов не выполняется признак Лейбница?
Σ(n=1, ∞) (-1)^n+1
Σ(n=1, ∞) (-1)^n / n!
Σ(n=1, ∞) (-1)^n / n^2
Σ(n=1, ∞) (-1)^n * 7n / 9n+1
Среди предложенных утверждений выберите верные
если n-ый член числового ряда Σ(n=1, ∞) un стремится к 0 при n→∞, то ряд Σ(n=1, ∞) un сходится
если n-ый член числового ряда Σ(n=1, ∞) un не стремится к 0 при n→∞, то числовой ряд Σ(n=1, ∞) un расходится
если числовой ряд Σ(n=1, ∞) un сходится, то n-ый член ряда стремится к 0 при n→∞
если числовой ряд Σ(n=1, ∞) un сходится, то n-ый член ряда un равен 0
Найти интервал сходимости ряда Σ(n=1, ∞) (x-3)^n / 3^n+1 (в ответе границы указать через «;» без пробелов)
Определите, какой из рядов сходится по признаку Даламбера
Σ(n=1, ∞) n! / 5^n
Σ(n=1, ∞) 4^n / n^2
Σ(n=1, ∞) 2 / 3n^2
Σ(n=1, ∞) n^2 / n!
Если предел отношения последующего члена к предыдущему члену знакоположительного числового ряда ранен 2, то
ряд сходится
ряд расходится
другой ответ
бесконечная сумма ряда равна бесконечности или суммы ряда вообще не существует
Радиус сходимости степенного ряда Σ(n=1, ∞) n!(x-2)^n равен
0
2
∞
-∞
Установите соответствие между знакопеременными рядами и видами сходимости.
Σ(n=1, ∞) (-1)^n * n
Σ(n=1, ∞) (-1)^n-1 1 / n^2
Σ(n=1, ∞) (-1)^n-1 / ln(n+1)
абсолютно сходится
условно сходится
расходится
Для обобщенного гармонического ряда верны следующие утверждения
его n-ый член всегда стремится к 0 при n → ∞
Данный ряд сходится при α > 1
данный ряд расходится при α ≤ 1
данный ряд знакопостоянен
Укажите сходящиеся числовые ряды
Σ(n=1, ∞) 1 / n^3+7n
Σ(n=1, ∞) 1 / 8√n-4
Σ(n=1, ∞) 1 / 3√n^5-5n^4+2
Σ(n=1, ∞) 1 / 4√n^3+n
Найти интервал сходимости ряда Σ(n=1, ∞) (-1)^n (x-2)^2n / n (в ответе границы указать через «;» без пробелов)
Ряд Σ(n=1, ∞) n^2 / n! по признаку Даламбера
другой ответ
сходится
расходится
может сходиться или расходиться
Определите, для каких рядов неприменим признак Лейбница
Σ 1 / 3n+1
Σ(n=1, ∞) (-1)^n / 2n-1
1/2 – 1/3 – 1/4 + 1/5 – 1/6 – 1/7 + …
Σ (-1)^n+1 / n^2
Средний балл за предмет 75 и выше, на оценку "Хорошо". В зависимости от комбинации вопросов в вашем варианте теста возможна вариативность итогового балла в небольших пределах.
После оплаты вы сможете скачать файл с ответами. Все вопросы из файла указаны ниже в содержании.
Правильные ответы на вопросы выделены зеленым цветом.
Чтобы найти нужный вопрос в файле, необходимо нажать одновременно Ctrl+F. Становится активным окно поиска. Вводите несколько слов из интересующего вопроса. Нажимаете Enter. Система выдает результаты поиска и нужные слова выделяются цветом.
ВАЖНО: Вы покупаете готовую работу, а именно ответы на те вопросы, которые перечислены ниже. Перед покупкой убедитесь, что ваши вопросы совпадают с ними. Если вашего вопроса нет в этом списке, значит его нет и в файле с правильными ответами.
Купить эту работу vs Заказать новую | ||
---|---|---|
6 раз | Куплено | Выполняется индивидуально |
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что
уровень оригинальности
работы составляет не менее 40%
|
Уникальность | Выполняется индивидуально |
Сразу в личном кабинете | Доступность | Срок 1—4 дня |
700 ₽ | Цена | от 200 ₽ |
Не подошла эта работа?
В нашей базе 9551 Ответы на вопросы — поможем найти подходящую