Автор24

54

Работы в базе авторов

Нурлан Сабуров —

Амбассадор бренда

Нурлан Сабуров

Амбассадор бренда

Нурлан Сабуров

54 готовые работы по ядерной физике и технологиям

2012

Трудовое правоотношение субъекты и содержание

Содержание

Содержание

Введение
Глава 1. Теоретические основы трудовых правоотношений: субъекты и содержание.
1.1. Концепция понятий и особенностей трудового правоотношения
1.2. Содержание трудового правоотношения
1.3. Основные принципы трудового права с субъек...

Содержание

Введение
Глава 1. Теоретические основы трудовых правоотношений: субъекты и содержание.
1.1. Концепция понятий и особенностей трудового правоотношения
1.2. Содержание трудового правоотношения
1.3. Основные принципы трудового права с субъектами права и обязанностями работников
Глава 2. Аспекты структуры трудового правоотношения
2.1. Субъекты трудового правоотношения
2.2. Объект и виды трудовых правоотношений
Заключение
Список использованной литературы...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
mikiomiki
Куплено: 0 раз
2021

Отчет по практике - Описание экологически (химически) опасного объекта АО НПО ЭНЕРГОМАШ

Содержание

1. Описание экологически (химически) опасного объекта……. 3
2. Сведения о характеристиках объекта………………………… 6
3. Воздействия ПОО на природную окружающую среду и население………………………………………………………….
8
4. Пути уменьшения потенциально опасного воздействия о...

1. Описание экологически (химически) опасного объекта……. 3
2. Сведения о характеристиках объекта………………………… 6
3. Воздействия ПОО на природную окружающую среду и население………………………………………………………….
8
4. Пути уменьшения потенциально опасного воздействия объекта на ОС…………………………………………………….
10
5. Отображение объекта на карте……………………………….. 13
6. Заключение…………………………………………………….. 13


2. Химически опасные объекты: АООТ "Фрост", АО "Интерхладторг-13", ЗАО "Кондитерская фабрика 'Красный Октябрь'", АО "Холодильник #5-6", Московский экспериментальный завод напитков, АО "Рица", АР "Бусиновский МКП", АО "Аурат", АООТ "Артант", АОЗТ "Красная Пресня", АООТ "Лианозовский молочный комбинат", АООТ "ИКМА", АО "Меридиан", АООТ "Чиполлино", ....

2. Сведения о характеристиках объекта

В НПО "Энергомаш" испытания проводятся на стендах закрытого типа, расположенных в непосредственной близости от жилых кварталов г. Химки.
Последнее обстоятельство обусловило исключительно жесткие требования к обеспечению экологической безопасности, как при проведении огневых испытаний ракетных двигателей, так и при выполнении работ, связанных с эксплуатацией топливных систем в испытательном комплексе: при транспортировке компонентов ракетного топлива (КРТ), заправке, технологической обработке топливопроводов, очистке сточных вод.
....

3. Воздействия ПОО на природную окружающую среду и население

Проливы КРТ не вызывают высокую экологическую опасность. Углеводородное горючее относится к слабо опасным веществам 4-й группы, а возможные проливы и выбросы аэрозолей горючего, надежно локализуются типовыми устройствами (поддоны, ловушки) и устраняются известными методами экологических технологий, используемых при работе с нефтепродуктами и их отходами.
В процессе эксплуатации стендов закрытого типа было установлено, что в продуктах сгорания за дожигателем кроме СО и окислов азота содержатся примеси и других загрязняющих веществ, в том числе несгоревшие углеводороды и сажа. Их присутствие существенно влияет на суммарную токсичность выбросов в атмосферу и показатель эффективности очистки продуктов сгорания.
....


6. Заключение

На основании данных многолетнего мониторинга качества атмосферного воздуха, проводимого экоаналитическими лабораториями НПО "Энергомаш", а также по результатам специальных исследований, проведенных в 1996-1997 гг. для оценки влияния огневых ......

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
SergioKO
Куплено: 0 раз
2021

Курсовая - Индукционная плавка кориума

Содержание

АННОТАЦИЯ
ВВЕДЕНИЕ
1. ИНДУКЦИОННАЯ ПЛАВКА КОРИУМА
1.1 Последствия тяжелой аварии в активной зоне реактора
1.2 Физические исследования кориума с использованием индукционных печей
2. МОДЕЛЬ 2D геометрии системы индуктор-расплав в Comsol Multiphysics


...

АННОТАЦИЯ
ВВЕДЕНИЕ
1. ИНДУКЦИОННАЯ ПЛАВКА КОРИУМА
1.1 Последствия тяжелой аварии в активной зоне реактора
1.2 Физические исследования кориума с использованием индукционных печей
2. МОДЕЛЬ 2D геометрии системы индуктор-расплав в Comsol Multiphysics




...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
SergioKO
Куплено: 0 раз
2021

Особенности взаимодействия лазерного излучения с веществом при облучении ультракороткими импульсами

Содержание

Введение 3
1. Воздействие сверхкоротких лазерных импульсов на материалы 4
2. Особенности экспериментального изучения воздействия фемтосекундных лазерных импульсов на материалы 5
3. Особенности разлета вещества при фемтосекундном лазерном воздействии ...

Введение 3
1. Воздействие сверхкоротких лазерных импульсов на материалы 4
2. Особенности экспериментального изучения воздействия фемтосекундных лазерных импульсов на материалы 5
3. Особенности разлета вещества при фемтосекундном лазерном воздействии 8
Заключение 10
Список использованных источников 11

...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
Djavanna.k
Куплено: 0 раз
2021

Строение Вселенной реферат по физике

Содержание

Пермь 2021

СОДЕРЖАНИЕ

ВВЕДЕНИЕ……………………………………2
Глава 1. Движение планет……………………4 Глава 2. Первые модели мира……………….6 Глава 3. Первая гелиоцентрическая система…………………………………………11
Глава 4. Система Птолеме...

Пермь 2021

СОДЕРЖАНИЕ

ВВЕДЕНИЕ……………………………………2
Глава 1. Движение планет……………………4 Глава 2. Первые модели мира……………….6 Глава 3. Первая гелиоцентрическая система…………………………………………11
Глава 4. Система Птолемея ………………….12
Глава 5. Солнце и звезды………………….. …16
Глава 6.Звездные миры………………………..20
Заключение…………………………………….24
Список литературы……………………………25







...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
Natusic1502
Куплено: 0 раз
2015

Конструкционные материалы ядерной жнергетики

Содержание

Введение
1. Условия работы конструкционных материалов в атомных реакторах
2. Требования к конструкционным материалам
3. Основные конструкционные материалы ядерной энергетики и их свойства
3.1. Бериллий и его соединения
3.2. Цирконий и его сплавы
3.3....

Введение
1. Условия работы конструкционных материалов в атомных реакторах
2. Требования к конструкционным материалам
3. Основные конструкционные материалы ядерной энергетики и их свойства
3.1. Бериллий и его соединения
3.2. Цирконий и его сплавы
3.3. Алюминий и его сплавы

...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
obnaz89
Куплено: 0 раз
2015

Преобразователь время-амплитуда

Содержание

Введение
1. Основные типы преобразователей время-амплитуда
1.1. Преобразователи старт-стопного типа
1.2. Преобразователи с перекрытием входных импульсов
2. Основные характеристики работы преобразователей время-амплитуда
3. Применение преобразовате...

Введение
1. Основные типы преобразователей время-амплитуда
1.1. Преобразователи старт-стопного типа
1.2. Преобразователи с перекрытием входных импульсов
2. Основные характеристики работы преобразователей время-амплитуда
3. Применение преобразователя время-амплитуда в системе регистрации характеристик сцинтиллятора
Заключение
Список литературы
...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
obnaz89
Куплено: 0 раз
2020

Домашнее задание №1 (Вариант №29) по курсу «Оборудование энергоустановок»

Содержание

ЗАДАНИЕ №1
По курсу «ОБОРУДОВАНИЕ ЭНЕРГОУСТАНОВОК»
Расчет теплогидравлической схемы ЯЭУ
Расчету подлежит упрощенная тепловая схема одноконтурной ЯЭУ с
паротурбинным циклом. Установка включает в себя: ядерный реактор –
генератор пара (Р), паровую турб...

ЗАДАНИЕ №1
По курсу «ОБОРУДОВАНИЕ ЭНЕРГОУСТАНОВОК»
Расчет теплогидравлической схемы ЯЭУ
Расчету подлежит упрощенная тепловая схема одноконтурной ЯЭУ с
паротурбинным циклом. Установка включает в себя: ядерный реактор –
генератор пара (Р), паровую турбину (Т) с промежуточными отборами пара
на регенеративный подогрев, конденсатор (К), подогреватели низкого
давления (ПНД), деаэратор (ДА), подогреватели высокого давления (ПВД),
насосы. Промежуточный перегрев и сепарация отсутствуют.
Заданы: электрическая мощность 𝑁эл, давление 𝑃0 и температура 𝑇0 пара на
входе в турбину, давление на выхлопе турбины 𝑃𝑘, относительный
внутренний к.п.д. турбины 𝜂𝑜𝑖, температура питательной воды ТПВ, давление
в деаэраторе 𝑃ДА, наличие и число ПНД и ПВД, схема включения дренажей
ПНД.
В результате расчета требуется найти температуру рабочей среды на входе и
выходе из элементов оборудования контура, параметры и величину расхода
пара в отборах на регенеративный подогрев, расход пара на турбину,
абсолютный КПД брутто установки.
...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
Vodanh
Куплено: 0 раз
2019

Атомная и альтернативная энергетика во Франции

Содержание

ВВЕДЕНИЕ 2
ГЛАВА I. Атомная энергетика: национальные особенности 6
1.1 Текущая политика Франции в сфере атомной энергетики 8
1.2 Французские компании в сфере атомной энергетики 12
ГЛАВА II. Совместные международные исследования Франции в области ядер...

ВВЕДЕНИЕ 2
ГЛАВА I. Атомная энергетика: национальные особенности 6
1.1 Текущая политика Франции в сфере атомной энергетики 8
1.2 Французские компании в сфере атомной энергетики 12
ГЛАВА II. Совместные международные исследования Франции в области ядерной энергетики 17
2.1 Исследовательский проект Phenix совместно с США 17
2.2 Программа Астрид 18
2.3 Проект строительства высокотемпературного реактора 21
2.4 Сотрудничество СЕА и «Росатома» 22
2.5 Проекты Areva 24
ГЛАВА III. Публичное мнение по поводу атомной энергетики во Франции 27
3.1 Общественное мнение в исторической ретроспективе 27
3.2 Освещение вопросов, связанных с атомной энергетикой в СМИ 29
3.3 Государственная политика в области принятия решений по атомной тематике 32
ГЛАВА IV. Альтернативная энергетика: текущие тенденции и перспективы 39
4.1 Обзор и целевые показатели использования возобновляемых источников энергии 41
4.2 План Programmation pluriannuelle de l'énergie по развитию альтернативных источников энергии 42
4.3 Значение ВИЭ во Франции 44
ЗАКЛЮЧЕНИЕ 47
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 51
...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
zazulin.tyoma83
Куплено: 0 раз
2020

Физика и энергетика

Содержание



Нетрадиционные источники энергии
Почему именно сейчас, как никогда остро, встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из - за нефт...



Нетрадиционные источники энергии
Почему именно сейчас, как никогда остро, встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из - за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетике. Разрабатываются гигантские энергетические программы, осуществление которых потребует огромных усилий и огромных материальных затрат.

Если в конце прошлого века самая распространенная энергия - энергетическая играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930году в мире было произведено около 300 миллиардов киловатт - часов электроэнергии. Вполне реален прогноз, по которому в 2000году будет произведено 30 тысяч миллиардов киловатт - часов! Гигантские числа, небывалые темпы роста! И все равно энергии будет мало - потребности в ней растут ещё быстрее.

Уровень материальной, а, в конечном счете, и духовной культуры людей, находится в прямой зависимости от количества энергии, имеющейся в их распоряжении. Чтобы добыть руду, выплавить из неё металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека всё время растут, да и людей становится всё больше.

Так в чём же проблема? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить всё больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счёт её преобразований из других форм. Вечные двигатели, якобы производящие энергию и ниоткуда её не берущей, к сожалению, невозможны.

А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нём химической энергии, преобразовании её в электрическую на тепловых электростанциях.

Конечно, способы сжигания топлива стали намного сложнее и совершеннее.

Новые факторы - возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды - потребовали нового подхода к энергетике.

В разработке Энергетической программы приняли участие виднейшие ученые страны, специалисты различных министерств и ведомств. С помощью новейших математических моделей ЭВМ рассчитали несколько сотен вариантов структуры будущего энергетического баланса страны.

Были найдены принципиальные решения, определившие стратегию развития энергетики страны на грядущие десятилетия.

Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, структура её изменится. Должно сократиться использование нефти. Существенно возрастает производство электроэнергии на атомных электростанциях. Начинается использование пока ещё не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экибастузском бассейнах. Широко будет, применятся природный газ, запасы, которых в стране намного превосходят запасы в других странах.

Энергетическая программа страны - основы нашей экономики в канун 21 века.

Но ученые заглядывают и вперед, за пределы сроков, установленных Энергетической программой. На пороге 21 века они трезво отдают себе отчёт в реальностях третьего тысячелетия.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны.

Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьёз задумываться над этим, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днём. Они нещадно расходуют подаренные им природой нефтяные запасы. Сейчас многие из этих стран, особенно в районе персидского залива, буквально купаются в золоте, не задумываясь, что через несколько десятков лет эти запасы иссякнут. Что же произойдёт тогда - а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Происшедшие повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило задуматься о других видах топлива, пригодных для замены нефти и газа. Особенно призадумались те страны, где нет собственных запасов нефти и газа и которым приходится их покупать.

А пока в мире всё больше учёных и инженеров занимаются поисками новых, нетрадиционных источников, которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Решение этой задачи исследователи ищут на разных направлениях.

Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии-энергии текущей воды и ветра, тепла земных недр, Солнца.

Много внимания уделяется развитию атомной энергетике, ученые ищут способы воспроизведения на Земле процессов, протекающих в звездах и снабжающих их колоссальными запасами энергии.

Что такое энергия?

В нашем индустриальном обществе от энергии зависит всё. С её помощью движутся автомобили, улетают в космос ракеты. С её помощью можно поджарить хлеб, обогреть жилище и привести в действие кондиционеры, осветить улицы, вывести в море корабли.

Могут сказать, что энергией являются нефть и природный газ. Однако это не так. Чтобы освободить заключенную в них энергию, их необходимо сжечь, так же как бензин, уголь или дрова.

Ученые могут сказать, что энергия-способность к совершению работы, а работа совершается, когда на объект действует физическая сила (такая как давление или гравитация). Согласно формуле, работа равна произведению силы на расстояние, на которое переместился объект. Попросту говоря, работа-энергия в действии.

Вы не раз видели, как подпрыгивает крышка закипающего кофейника, как несутся санки по склону горы, как набегающая волна приподнимает плот. Всё это примеры работы, энергии в действии, действующей на предметы.

Подпрыгивание крышки кофейника было вызвано давлением пара, возникшем при нагревании жидкости. Санки ехали потому, что существуют гравитационные силы. Энергия волн двигала плот.

В нашем работающем мире основой всего является энергия, без неё не будет совершаться работа. Когда энергия имеется в наличие и может быть использована, любой объект будет совершать работу иногда созидательную, иногда разрушительную. Даже музыкальный инструмент-рояль-спосбен совершать работу.

Представьте себе, что вдоль внешней стены многоквартирного дома поднимают рояль. Пока люди тянут за веревки, они прилагают силу, заставляющую двигаться рояль. В этом случае работу совершают люди, а не рояль. Он лишь накапливает потенциальную энергию по мере того, как всё выше и выше поднимается над землёй. Когда, наконец, рояль достигает пятого этажа, он сможет висеть на этом уровне до тех пор, пока люди внизу поддерживают его с помощью веревок и блоков. Однако представьте, что веревки обрываются. Немедленно проявится сила гравитации и потенциальная энергия, накопленная роялем, начнёт, высвобождаться. Рояль рухнет вниз. Он расплющит всё, что попадется ему на пути, ударится о тротуар и разобьется вдребезги.

Вся ситуация, разумеется, случайна, и, тем не менее, служит примером того, что и рояль может совершать работу. В данном случае-разрушительную, но всё же работу.

Мир наполнен энергией, которая может быть использована для совершения работы данного характера. Энергия может, находится в людях и животных, камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах.

Энергия солнца:
В последние время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всё мире, заставляет нас рассмотреть его возможности отдельно.

Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0.0125% этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5% - полностью покрыть потребности на перспективу.

К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250Вт/м. Поэтому, чтобы коллекторы солнечного света излучения "собирали" за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км!

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты.

Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счёт солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчётам изготовление коллекторов солнечного излучения площадью 1км, требует примерно 10 тонн алюминия.

Доказанные же на сегодня мировые запасы этого металла оцениваются в 1,17 10тонн.

Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счёт солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1 10 до 3 10км. В то же время общая площадь пахотных земель в мире составляет 13 10 км.

Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечёт за собой гигантское увеличение потребности в материалах, а, следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчёты показывают, что для производства 1 Мвт год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетики на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока ещё электрической энергии, рожденными солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые открыли, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Ветровая энергия:
Огромная энергия движущихся воздушных масс. Запасы энергия ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветра от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда, дующие на просторах нашей страны, могли бы легко удовлетворить все её потребности и электроэнергии! Климатические условия позволяют развивать ветроэнерготехнику на огромной территории-от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный, да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывает всего одну тысячную мировых потребностей энергии.

Техника 20 века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой-получении электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

В наши дни к созданию конструкций ветроколеса-сердце любой ветроэнергетической установки-привлекаются специалисты самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых инженеров созданы самые разнообразные конструкции современных ветровых установок.

Энергия рек:
Многие тысячелетия, верно, служит человеку энергия, заключенная в текущей воде. Запасы её на Земле колоссальны. Недаром некоторые ученные считают, что наши планеты правильнее было бы называть не Земля, а Вода-ведь около трёх четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую её часть, поступаю от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских её запасов. Раньше всего люди научились энергию рек.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что много вековой опыт у неё уже имелся.

Можно считать, что современная гидроэнергетика родилась в 1891 году.

Преимущества гидроэлектростанций очевидны - постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка маленькой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки турбины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним окажется ничтожным. Поэтому в начале 20 века было построено несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием "Белый уголь". Это было лишь началом.

Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волоховская ГЭС, в следующем - началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэнергетических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились большие промышленные комплексы.

Но пока людям служит лишь не большая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы колоссальное количество энергии.

Энергия земли:
Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно не большого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - нет пока у людей возможности обуздать не покорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявление энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Маленькая европейская страна Исландия - "страна льда" в дословном переводе - полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли - других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами – фонтанами горячей воды, с точностью хронометра вырывающейся из - под земли. И хотя не исландцам она принадлежит приоритет принадлежит в использовании тепла подземных источников, жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно. Столица - Рейкьявик, в которой проживает половина населения страны, отапливается только за счёт подземных источников.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие подземные источники. Первая такая электростанция, совсем ещё маломощная, была построена в 1904году в небольшом итальянском городке Лардерелли, который ещё в 1827году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали всё новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигала уже внушительные величины - 360тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, её мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500тысяч киловатт.

Атомная энергия:
Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы. Главным, сразу заинтересовавшим исследователей был вопрос: откуда берётся энергия лучей, испускаемых ураном, и почему уран всегда чуточку теплее окружающей среды? Под сомнение ставился либо закон сохранения энергии, либо утвержденный народом принцип неизменности атомов? Огромная научная смелость требовалась от ученых, которые перешагнули границы привычного, отказались от устоявшихся представлений. Такими смельчаками оказались молодые ученые Эрнест Резерфорд и Фредерик Содди. Два года упорного труда по излучению радиоактивности привёл их к революционному тогда выводу: атомы некоторых элементов подвержены распаду, сопровождающемуся излучению энергии в количествах, огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях. Невиданными темпами развивается атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают своё мнение, что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях. В принципе энергетический ядерный реактор устроен довольно просто - в нём, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распадов атома урана или другого ядерного топлива. На атомной электростанции нет большого парового котла, состоящего из тысячи километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил небольшой ядерный реактор. Самый распространенный в настоящее время тип реактора водографитовый. Ещё одна распространённая конструкция реакторов - так называемые водо-водяные. В них вода не только отбирает тепло от твэлов, но и служит замедлителем нейтронов вместо графита. Конструкторы довели мощность таких реакторов до миллиона киловатт. Но всё-таки будущее нашей энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкции которых предложены учеными - реакторами на быстрых нейтронах. Их называют ещё реакторами- размножителями.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она, безусловно, будет развиваться и впредь, безотказно поставляю столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а учёные и инженеры сумеют найти необходимые решения. ...

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
larisa.avtor24
Куплено: 0 раз
2020

Расчет времени откачки распределенных вакуумных систем

Содержание



Определим время откачки нестационарном режиме для трубопровода с распределенным объемом без учета газовыделения с его стенок . Один конец трубопровода закрыт заглушкой , а другой присоединен к насосу с очень большой быстротой откачки , т.е. в от...



Определим время откачки нестационарном режиме для трубопровода с распределенным объемом без учета газовыделения с его стенок . Один конец трубопровода закрыт заглушкой , а другой присоединен к насосу с очень большой быстротой откачки , т.е. в открытом сечении трубопровода давление можно считать равным нулю .

Разность газовых потоков , проходящих через сечения трубопровода , отстоящих на , определяют скорость удаления газа :

, (1)

где – площадь поперечного сечения трубопровода ; – производимость и длина трубопровода .

Записанное выражение после сокращения можно представить в виде дифференциального уравнения , имеющего следующие начальные и граничные условия : .

Решение этого уравнения :

, (2)

где – объем трубопровода .

Для и уравнение ( 2 ) можно упростить :

.

Отсюда следует выражение для времени снижения давления от до в закрытом сечение трубопровода :

.

В том случае , когда зависит от давления ,

, где

где – среднее значение в соответствующих диапазонах давлений ....

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
larisa.avtor24
Куплено: 0 раз
2020

Расцвет естествознания на конец XIX века. Электричество

Содержание

Современная жизнь немыслима без радио и телевидения, телефонов и телеграфа, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока.

Открытие электрического тока и...

Современная жизнь немыслима без радио и телевидения, телефонов и телеграфа, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока.

Открытие электрического тока и всех последующих открытий, связанных с ним, можно отнести к концу XIX – началу XX веков. В это время по всей Европе и в том числе России прокатилась волна открытий, связанных с электричеством. Пошла цепная реакция, когда одно открытие открывало дорогу для последующих открытий на многие десятилетия вперёд.

Начинается внедрение электричества во все отрасли производства, появляются электрические двигатели, телефон, телеграф, радио, электронагревательные приборы, начинается изучение электромагнитных волн и влияние их на различные материалы, внедрение электричества в медицину.

Удивительный XIX век, заложивший основы научно-технической революции, так изменившей мир, начался с гальванического элемента — первой батарейки, химического источника тока (вольтова столба). Этим чрезвычайно важным изобретением итальянский учёный А. Вольта встретил новый 1800 год. Вольтов столб позволил вести систематическое изучение электрических токов и находить им практическое применение.

В XIX веке электротехника выделилась из физики в самостоятельную науку.

Над закладкой её фундамента трудилась целая плеяда ученых и изобретателей. Датчанин Х. Эрстед, француз А. Ампер, немцы Г. Ом и Г. Герц, англичане М. Фарадей и Д. Максвел, американцы Д. Генри и Т. Эдисон — эти имена мы встречаем в учебниках физики (в честь некоторых из них названы единицы электрических величин).

XIX век щедро одарил человечество изобретениями и открытиями в области технических средств коммуникации. В 1832 году член-корреспондент Петербургской Академии наук Павел Львович Шиллинг в присутствии императора продемонстрировал работу изобретённого им электромагнитного телеграфа, чем положил начало проводной связи. В 1876 году Александр Белл изобрёл телефон. В 1859 году братья Луи и Огюст Люмьеры дали первый киносеанс в Париже, а Александр Степанович Попов в Петербурге публично демонстрировал передачу и приём электрических сигналов по радио.

Не зря XIX век назвали веком электричества. В 1867 году Зеноб Грамм (Бельгия) построил надёжный и удобный в эксплуатации электромашинный генератор, позволяющий получать дешевую электроэнергию, и химические источники отошли на второй план. А в 1878 году на улицах Парижа вспыхнул ослепительный “русский свет” — дуговые лампы конструкции Павла Николаевича Яблочкова. Закачались стрелки на приборах первых электростанций.

Возможности электричества поражали: передача энергии и разнообразных электрических сигналов на большие расстояния, превращение электрической энергии в механическую, тепловую, световую…

Гальванический элемент
Рождение электротехники начинается с изготовления первых гальванических элементов — химических источников электрического тока. Связывают его с именем Александра Вольты. Однако рассказывают, что, раскапывая египетские древности, археологи обратили внимание на странные сосуды из обожженной глины с изъеденными металлическими пластинами в них. Что это?.. Многое в окаменевших остатках цивилизаций, канувших в Лету, до сих пор не понятно людям. Нелегко восстановить образ минувшего, тем более что часто он оказывается не таким уж примитивным, как думается. “А уж не банки ли это химических элементов?” — пришла кому-то в голову сумасшедшая мысль. Впрочем, так ли она безумна? Ведь получение постоянного электрического тока химическим путём действительно очень просто. Солёной воды на Земле хоть отбавляй, как и необходимых металлов — цинка и меди. Вместо меди лучше применять серебро и золото… Первые элементы имели один общий недостаток. Они давали ток лишь первые несколько минут, затем требовали отдыха. Почему это происходило, ни кто не понимал. Но с такими быстро утомляющимися элементами нечего было, и думать затевать какую-то промышленность. И поэтому все усилия исследователей сконцентрировались на проблеме утомляемости.

Оказалось, что цинк, соединяясь с кислотой, вытесняет из нее водород. Пузырьки газа оседают на металлических пластинках и затрудняют прохождение тока. Физики назвали это явление поляризацией и объявили ему войну.

Примерно в начале 30-х годов прошлого столетия англичане Кемп и Стерджен выяснили, что цинковая пластина, покрытая амальгамой, действует слабее чем пластина из чистого цинка, но при этом не растворяется в кислоте, когда элемент не работает, то есть когда он не даёт тока. Это стало существенным достижением. Следом за ним французский учёный, основатель учёной династии Беккерель высказал мысль, что хорошо бы попробовать опускать пластины в разные сосуды так, чтобы выделяющийся водород тут же химически соединялся с кислородом, образуя воду. Идея понравилась, но как её реализовать? Изобретатели всех стран принялись за опыты.

На первом этапе наибольший успех выпал на долю профессора химии Лондонского королевского колледжа Даниеля. В стеклянную банку с медным купоросом он поместил согнутый в цилиндр металлический лист. Внутрь вставил глиняный сосуд с пористыми стенками, заполненный разбавленной серной кислотой. В кислоту был помещён цинк. Водород проходил через поры глиняного сосуда, вытеснял медь из купороса. Несколько синих кристалликов, брошенных на дно банки, пополняли убыль меди… Поляризация была побеждена! Однако у элемента Даниеля нашлись другие недостатки. Например, он имел электродвижущую силу. Часть электрической энергии тратилось внутри самого элемента на разложение медного купороса.

Соотечественник Даниеля Вильям Грове решил заменить медный купорос азотной кислотой. А чтобы она не разъела медный электрод, заменил медь платиной. Всё получилось в соответствии с ожиданиями: электродвижущая сила возросла. К сожалению, возросла и стоимость такого источника тока: платина — дорогой металл. Грове и его последователи делали электроды из тончайших листков, согнутых для прочности буквой S. Несмотря на высокую стоимость элементы Грове нашли широкое применение в лабораториях многих стран мира.

Может показаться странным, что никто не додумался заменить платину древесным углём. Принципиальная возможность такой замены была уже известна. Но надо учитывать тот уровень техники, ни кто не умел делать плотных углей. А обычный древесный уголь был слишком пористым. Прошло несколько лет, прежде чем немецкий химик Роберт Бунзен описал способ получения угольных стержней из прессованного молотого графита, который выделяли при сгорании светильного газа на раскалённых стенках реторт. Стержни стали прекрасным заменителем платины.

Элемент Бунзена приняли “на ура” не только лаборатории физики, но и первые электротехнические предприятия по гальванопластике. И это, несмотря на то, что элемент при работе выделял немало удушливых паров азотной кислоты. Иоаган Поггендорф заменил азотную кислоту хромовой, но это себя не оправдывало т. к. производство хромовой кислоты очень сложный и дорогостоящий проект. Изобретатели старались вовсю. На страницах журналов появлялись всё новые и новые конструкции химических элементов. Их изобретали все: любители, научные мужи… Впрочем, во второй половине XIX столетия источники тока стали изготовлять в специальных мастерских. Мастерские эти работали в основном на телеграф. Основными требованиями которого были: простота устройства, его дешевизна, устойчивость и надёжность в работе. За всё это телеграфисты соглашались на самые слабые токи.

Можно рассказать ещё о многих более или менее удачных попытках изобретательства. Наибольший успех выпал на долю парижского химика Жоржа Лекланше. Он наполнил глиняную банку смесью перекиси марганца с кусочками угля из газовых реторт и поместил туда же прямоугольную угольную призму, которая должна была служить положительным электродом. Эта система заливалась сверху варом или смолой и вставлялась в стеклянную четырёх угольную банку, заполненную раствором нашатыря, с цинковым электродом. При этом хлор из нашатыря, соединяясь с цинком, давал хлористый цинк. Аммоний распадался на растворяющийся аммиак и водород. Вот тут-то и была ахиллесова пята этого превосходного элемента. Перекись марганца окисляла водород медленно и небольшими порциями. А выделение этого газа зависело от силы тока, который отбирается с элемента. Больше ток больше выделяется водорода. Водород же поляризует элемент, и последний быстро устаёт. Правда после некоторого отдыха он исправно работает снова. Однако лучше всего его было использовать при малых силах тока в телеграфии или в системе сигнализации, где между моментами работы существуют довольно большие промежутки.

Большое неудобство при использовании элементов Лекланше создавали стеклянные банки с жидкостью. Особенно это мешало компаниям пассажирских перевозок, которые строили корабли с системой сигнализации не чем не уступавшей многим лучшим отелям. Но в море корабли подвергались качке… И чтобы не расплескать жидкость из банок, их стали заполнять опилками, а потом заливать варом. Под такой крышкой в результате работы батареи начинали скапливаться газы, которые в последствии разрывали банку. Не скоро люди научились делать сухие элементы, которые стали в наше время такими обычными. Но любой из них является много раз усовершенствованным и упрощенным элементом Лекланше.

Великим достижением прошлого века, связанного с исследованием работы тех же элементов, явилось открытие возможности параллельного и последовательного их соединения, когда в первом случае удавалось получить от них суммарное напряжение, а во втором — суммарный ток…

Вторичные элементы (аккумуляторы)
Грове в 1932 году изобретает газовый элемент, который получает название вторичного элемента, поскольку давал ток лишь после его зарядки от какого-нибудь постороннего источника. Однако из-за неудобства пользования газовый элемент Грове распространения не получил.

Примерно в 1859 – 1860 годах в лаборатории Александра Беккереля —второго представителя славной династии французских физиков — работал в качестве ассистента некто по имени Гастон Плантэ. Молодой человек решил заняться совершенствованием вторичных элементов, чтобы сделать их надёжными источниками тока для телеграфии. Сначала он заменил платиновые электроды газового элемента Грове свинцовыми. А после многочисленных опытов и поисков вообще перешел к двум одинаковым свинцовым листам. Он их проложил суконкой и намотал всё это на деревянную палочку, чтобы вошло в круглую стеклянную банку с электролитом. Затем подключил обе пластины к батарее. Через некоторое время вторичный элемент зарядился, и сам оказался способен давать ощутимый ток постоянной силы. При этом если его не разряжали сразу, заряд электричества сохранялся в нем длительное время.

Это и было рождением аккумулятора — накопителя электрической энергии. Первые аккумуляторы Гастона Плантэ имели очень незначительную электрическую ёмкость — они запасали совсем немного электричества. Но изобретатель заметил, что если заряженный первоначально прибор разрядить, а затем пропустить через него ток в обратном направлении и повторить этот процесс не один раз, то емкость аккумулятора увеличится. При этом возрастал слой окисла на электродах. Этот процесс получил название формовки пластин и занимал сначала около трёх месяцев.

Как и у всех гальванических элементов, ток аккумулятора тем больше, чем больше площадь его электродов. Эту истину хорошо усвоил Камилл Фор. Он был самоучкой, без специального образования, с юных лет безраздельно увлекался техникой. Вынужденный зарабатывать деньги на жизнь, Фор сменил множество специальностей. Был чертёжником, техником, рабочим, химиком на английском пороховом заводе, работал у Планте. Разносторонние практические знания сослужили ему добрую службу. После Парижской выставки 1878 года в голову Камилла Фора запала идея нового способа формовки пластин. Он попробовал заранее покрывать их свинцовым суриком. При зарядке сурик на одной из пластин превращался в перекись, а на другой соответственно раскалялся. При этом слой окисла приобретал пористое строение, а значит, и увеличивалась площадь взаимодействия с кислотой. Процесс формовки протекал значительно быстрее. Аккумуляторы Фора при том же весе запасали значительно больше электрической энергии, чем аккумуляторы Плантэ. Другими словами, их энергоёмкость была больше. Это обстоятельство особенно привлекало к ним симпатии электротехников. Но главная причина их возросшей популярности заключалась в другом… В конце столетия во многих странах на улицах и в домах появилось электрическое освещение. Лампы накаливания питались энергией пока еще маломощных машин постоянного тока. Ранним утром и поздним вечером, когда энергии требовалось значительно больше, на помощь машинам приходили аккумуляторы. Это было значительно дешевле, чем устанавливать дополнительные генераторы. Тем более, что в спокойные дневные и ночные часы аккумуляторы могли заряжаться, поглощая излишки энергии вырабатываемой машинами.

Дальнейшее совершенствование свинцово-кислотных аккумуляторов шло по пути улучшения их конструкции и изменения технологии получения пластин.

Существует еще один вид аккумуляторов — железоникелевый щелочной, который разработал Эдисон. В нем отрицательный электрод выполнен из пористого железа или кадмия с большой рабочей поверхностью. Положительный электрод — никелевый — окружен окисью трёхвалентного никеля. В качестве электролита используют 21 % раствор едкого натра. Корпус чаще всего изготавливается из стали. Коэффициент полезного действия у щелочного аккумулятора меньше, чем у свинцового. Но зато щелочной аккумулятор лучше переносит перегрузки, не чувствителен к избыточному заряду и сильному разряду, прочен, легко переносит перегрев и не нуждается в ремонте. А поскольку из щелочных аккумуляторов не выделяются газы их можно делать герметичными.

Русский свет
Создание экономичного генератора электрического тока оживило усилия изобретателей, искавших области применения электрического тока помимо телеграфа. Уже первые исследователи гальванизма заметили, что проволока, по которой идёт электрический ток, нагревается, накаливается и может даже раскалиться до яркого свечения и расплавиться. Кроме того, в 1802 году В. В. Петров указал на возможность освещения тёмных покоев с помощью электрической дуги. Он же исследовал электроразрядное свечение в разряженном пространстве под колпаком. Те же явления позже были изучены Дави и Фарадеем… Освещение! Сейчас трудно представить себе, что всего полтораста лет тому назад оно являло собой проблему общественной жизни. С начала XIX века в дома горожан проникает газовое освещение, пришедшее на смену свечам и лампам с жидким горючим. Сначала газовый свет казался великолепным. О лучшем нечего было и мечтать. Однако триумф газа был недолгим. Уже к середине века газовое освещение перестало удовлетворять людей из-за своих многочисленных недостатков. Оно было тусклым, небезопасным в пожарном отношении, вредным для здоровья.

На фабриках и на заводах, где трудовой день был 14 – 16 часов, отсутствие яркого света сказывалось на росте производительности и тормозило технический прогресс. Все это способствовало усилению работы изобретателей над новыми видами электрического освещения: над дуговыми лампами, лампами накаливания и газоразрядными лампами.

Раньше других появились в разработке дуговые лампы, хотя первое время их прогресс сдерживался отсутствием надёжных источников тока, не было и хороших углей. Древесные угли, которыми пользовались Дэви Петров, быстро сгорали и были не прочны. Выход нашёл Роберт Бунзен — известный химик, изобретатель цинко-угольного элемента. Он предложил использовать твёрдый нагар, остающийся на раскалённых стенках газовых реторт. Из отбитых кусков этого нагара удавалось выпилить небольшие твёрдые стержни, которые хорошо проводили ток и сгорали значительно медленнее. Позже этот нагар стали молоть и из порошка формовали стержни требуемого размера и необходимой однородности.

Вторая трудность, её называли проблемой регулятора, заключалась в том, что угли сгорали — и расстояние между ними увеличивалось. Дуга становилась неспокойной, свет из белого становился голубым, начинал мигать и гас. Нужно было придумать механизм, поддерживающий между концами угля одинаковое расстояние.

Изобретатели предложили много устройств. Большинство из них имело тот недостаток, что невозможно было включить несколько ламп в одну цепь. Поэтому каждый источник первое время работал на один светильник.

Но вот в 1856 году в Москве изобретатель А. И. Шпаковский создал осветительную установку с одиннадцатью дуговыми лампами, снабженными оригинальными регуляторами. Но и они не решали проблему дробления света.

Первым разрешил её изобретатель В. Н. Чиколев, применивший в 1869 году в дуговой лампе дифференциальный регулятор. Этот принцип используется до сих пор в больших прожекторных установках.

Примерно к тому же времени относятся удачные опыты по применению ламп накаливания и даже первых газосветных трубок. Но самую важную и решающую роль в переходе от опытов по электричеству к электрическому освещению сыграли работы русского электротехника П. П. Яблочкова… В 1875 Яблочков вместе с изобретателем Глуховым организовал в Петербурге мастерскую физических приборов. Компаньоны с увлечением конструировали электротехнические новинки, ставили опыты, обсуждали грандиозные проекты… К сожалению, оба оказались плохими предпринимателями, и финансовые дела их предприятия шли из рук вон плохо.

Однажды, получив заказ на изготовление установки для электролиза поваренной соли, Яблочков занялся поиском наивыгоднейшего положения электродов в растворе. Случилось так, что он коснулся концом одного электрода конца другого. Вспыхнула дуга. Они не переставали гореть, пока не сгорели. Павел Николаевич, мысли которого были заняты обдумыванием устройства дуговой лампы, сразу же понял, что перед ним простое и безусловное решение проблемы… Финансовый крах оторвал его от занятий. В октябре того же года Яблочков уезжает в Париж, где поступает на работу в электротехнические мастерские. Здесь он доводит своё изобретение до конца и получает за него патент. Два параллельно поставленных угольных стержня с прокладкой из каолина присоединялись к клеммам гальванической батарейки или машине постоянного тока. Наверху стояла угольная перемычка — запал, который быстро сгорал при включении. Немало пришлось поэкспериментировать Павлу Николаевичу. Угли сгорали не равномерно. Положительный электрод уменьшался быстрее, приходилось его делать толще… Простота конструкции и безотказность в работе электрической свечи Яблочкова привели к тому, что успех изобретения превзошёл самые смелые ожидания. Технические журналы и мировая пресса пророчили наступление новой эпохи… В 1876 году русский изобретатель представил свою удивительную свечу на Лондонской выставке. И там она стала гвоздём программы. А год спустя предприимчивый француз Денейруз добился учреждения акционерного общества “Общество изучения электрического освещения по методам Яблочкова”. Благодаря стараниям этого француза, лампы Яблочкова появились в самых посещаемых местах Парижа, на улице Авеню де ль’Опера и на площади Оперы, а также в магазине “Лувр” тусклое газовое и жидкостное освещение заменили матовые шары, которые светились белым, мягким светом.

Это было так прекрасно, что из Парижа русский свет шагнул не только в другие города, но пересёк границы. Ещё большую популярность он получил после удачного эксперимента Яблочкова, в котором он попробовал применять не постоянный, а переменный ток (теперь угли сгорали равномерно).

Лампа накаливания
Единственное изобретение, которое можно противопоставить дуговой лампе Яблочкова, носит название дуговой лампы. Её демонстрация произошла тёмным осенним вечером 1873 года, толпы петербуржцев спешили на Пески (ныне — район Советских улиц). Там их ожидало чудесное зрелище. В двух уличных фонарях керосиновые лампы были заменены какими-то стеклянными пузырями, от которых шли провода в толстой резиновой оболочке к световой машине. Рядом суетились люди. Прилично одетый господин в длинном расстёгнутом пальто что-то прикручивал, соединял. Провода лежали прямо на панели и путались под ногами. Но вот застучала машина, зачихала, завертела якорь генератора, и пузырьки на столбах вспыхнули ярким светом. Люди вынимали припасённые газеты, сравнивали, на каком расстоянии от старого керосинового фонаря и нового можно было различить буквы. Разница была впечатляющей. Люди подходили и поздравляли господина в пальто: ”Господин Лодыгин, это великолепно! Господин Лодыгин, это изумительно”.

Лампа накаливания была не первым его проектом, ещё в 1870 году он пытается предложить Франции своё детище электролёт. Но, к сожалению, его проект, на который тогдашнее правительство Франции ассигнует 50 тысяч франков, был свёрнут по причине революции. А патент на применение электричества в воздушной навигации получили братья Гастон и Альфред Тиссандье — воздухоплаватели.

От него осталась незначительная деталь. Для освещения своего летательного аппарата Лодыгин предлагал лампочку накаливания. Вернувшись в Россию, он получает привилегию на неё и, имея уже некоторый опыт, патентует изобретение в ряде европейских государств.

В 70-е годы того же века с лампочкой Лодыгина случилась одна любопытная история… В то время на одной из Северо-Американских верфей строили корабли для России, и когда настало время их принимать, туда поехал лейтенант русского флота А. Н. Хотинский. Он взял с собой несколько ламп накаливания Лодыгина. Может, чтобы освещать помещения корабля. А почему бы и нет? Изобретение уже тогда было запатентовано во Франции, России, Бельгии, Австрии и Великобритании. Случилось так, что он показал русские лампы изобретателю по имени Томас Эдисон, которому новинка чрезвычайно понравилась. Американец принялся за усовершенствование русского изобретения.

Сейчас трудно установить насколько описанное обстоятельство повлияло на изобретение Эдисона. Но именно он первым предложил выкачивать из ламп накаливания воздух. Но Лодыгин тоже не остановился на достигнутом. Он ставит всё новые и новые опыты, в результате которых он предложил использовать вместо угля вольфрам и другие металлы, тогда как у Эдисона роль спирали исполняло бамбуковое волокно.

Белое пятно в электричестве
В конце прошлого века учёные (Стюарт, 1878 год) пришли к выводу, что и в атмосфере Земли на высоте примерно шестидесяти километров начинается ионизированная область — ионосфера, проводящий слой атмосферы, который как скорлупой охватывает планету. Это позволяет грубо и приближенно рассматривать земную поверхность и ионосферный слой как обкладки конденсатора с разностью потенциалов около трёхсот тысяч вольт. В районе ясной погоды этот природный конденсатор постоянно разряжается, поскольку ионы под действием сил электрического поля уходят к Земле. А вот в районах грозовой деятельности картина иная. Считается, что в один момент времени гроза охватывает примерно 1 % земной поверхности. В этих районах мощные токи текут снизу вверх, компенсируя разряд в ясных районах.

Таким образом, грозовые облака — это не что иное, как природные электрические генераторы, поддерживающие в равновесии всю систему сложного электрического хозяйства во всем земном масштабе.

Казалось бы, люди, занявшиеся изучением электрических сил, в первую очередь, должны были бы обратить внимание на атмосферное электричество. Ведь оно, как никакое другое, ближе и всегда под руками. Однако на деле было не так. Долгое время исследователи и не предполагали, что крошечная искорка и молния явления одной природы и лишь разные по своему масштабу. Вернее сказать, подозрения, конечно, были. Порою, они даже высказывались вслух. Но это были лишь подозрения. Глубокое заблуждение древних философов, убеждённых в том, что мир Земля не имеет ничего общего с миром Неба, были стойкими и держались долго. Лишь в XVIII веке наступило время объединить наблюдаемые явления и уверенно заявить о том, что небесное и земное электричество – явления одной природы. И только XX столетие объяснило механизм образования грозы. Правда, пока объяснило тоже не до конца…

Применение электричества в медицине и биологии
С течением времени областей применения электричества становится всё больше. Становится популярным применение электричества и в химии, начало которому положил Фарадей.

Перемещение вещества — движение зарядоносителей — нашло одно из первых своих применений в медицине для ввода соответствующих лекарственных соединений в тело человека. Суть метода состоит в следующем: нужными лекарственными соединениями пропитывается марля или любая другая ткань, которая служит прокладкой между электродами и телом человека; она располагается на участке тела, подлежащему лечению. Электроды подключаются к источнику постоянного тока. Метод подобного ввода лекарственных соединений, впервые применённый во второй половине XIX века, широко распространён и сейчас. Он носит название электрофореза или ионофореза.

Последовало ещё одно, имеющее огромную важность для практической медицины открытие в области электротехники. 22 августа 1879 года английский ученый Крукс сообщил о своих исследованиях катодных лучей, о которых в то время стало известно следующее:

При пропускании тока высокого напряжения через трубку с очень сильно разряженным газом из катода вырывается поток частичек, несущихся с огромной скоростью.
Эти частички движутся строго прямолинейно.
Эта лучистая энергия может производить механическое действие. Например, вращать маленькую вертушку, поставленную на её пути.
Лучистая энергия отклоняется магнитом.
В местах, на которые падает лучистая материя, развивается тепло. Если катоду придать форму вогнутого зеркала, то в фокусе этого зеркала могут быть расплавлены даже такие тугоплавкие материалы, как, например, сплав иридия и платины.
Катодные лучи — поток материальных телец меньше атома, а именно частиц отрицательного электричества.
Таковы первые шаги в преддверии нового крупнейшего открытия, сделанного Вильгельмом Конрадом Рентгеном.

Рентген обнаружил принципиально иной источник освещения, названный Х-лучами. Позже эти лучи получили название рентгеновских. Сообщение Рентгена вызвало сенсацию. Во всех странах мира множество лабораторий начали воспроизводить установку Рентгена, повторять и развивать его исследования. Особый интерес вызвало это открытие у врачей. Физические лаборатории, где создавалась аппаратура, используемая Рентгеном для получения Х-лучей, атаковались врачами и их пациентами, подозревавшими, что в них находятся когда-то проглоченные иголки, пуговицы и т. д. История медицины до этого не знала столь быстрой реализации открытий в области электричества, как это случилось с новым диагностическим средством — рентгеновскими лучами.

Заинтересовались рентгеновскими лучами и в России. Еще не было официальных научных публикаций, отзывов на них, точных данных об аппаратуре, лишь появилось краткое сообщение о докладе Рентгена, а под Петербургом, в Кронштадте, изобретатель радио Александр Степанович Попов уже приступает к созданию первого отечественного рентгеновского аппарата. Об этом факте мало известно. О роли А. С. Попова в разработке первых отечественных рентгеновских аппаратов, их внедрении, пожалуй, впервые стало известно из книги Ф. Вейткова.

Новые достижения электротехники соответственно расширили возможности исследования “живого” электричества. Маттеучи, применив созданный к тому времени гальванометр, доказал, что при жизнедеятельности мышц возникает электрический потенциал. Разрезав мышцу поперёк волокон, он соединил её с одним из полюсов гальванометра, а продольную поверхность мышцы соединил с другим полюсом и получил потенциал в пределах 10 – 80 мВ. Значение потенциала обусловлено видом мышц. По утверждению Маттеучи, биоток течёт от продольной поверхности к поперечному разрезу, и поперечный разрез является электроотрицательным. Этот любопытный факт был подтверждён опытами над различными животными — черепахами, кроликами и птицами, проводимыми рядом исследователей, из которых следует выделить немецких физиологов Дюбуа-Реймона, Германа и нашего соотечественника В. Ю. Чаговца. Пельтье в 1834 году опубликовал работу, в которой излагались результаты исследования взаимодействия биопотенциалов с протекающим по живой ткани постоянным током. Оказалось, что полярность биопотенциалов при этом меняется. Изменяется и амплитуда.

Одновременно наблюдалось и изменение физиологических функций.

В лабораториях физиологов, биологов, медиков появляются электроизмерительные приборы, обладающие достаточной чувствительностью и соответствующими пределами измерений. Накапливается большой и разносторонний экспериментальный материал.

Поражение электрическим током
В 1862 году впервые был описан случай поражения электрическим током при случайном соприкосновении с токоведущими частями. Смерть наступила мгновенно. Подобные случаи смерти, вызванной электрическим током, начали регистрировать; по мере расширения использования электричества число их росло. Мнение было единое — смерть наступала, как правило, мгновенно и каких-либо существенных изменений на теле не обнаруживалось. Исключение составляли случаи, когда поражение сопровождалось ожогом электрической дугой.

С конца XIX века начинаются опыты на животных для определения пороговых — опасных — значений тока и напряжения. Определение этих значений вызвалось необходимостью создания защитных мероприятий. Начиная с первых годов XIX столетия, особенно после того, как появляются сведения о крайне мучительной и не мгновенной смерти при казни на электрическом стуле, возникли противоречия, как в оценке опасных значений поражающих токов, так и в оценке механизма поражения. Не вдаваясь сейчас в существо противоречий, отметим одно: при электротравмах люди погибают иногда при небольших значениях напряжений и токов, и выживают при больших значениях напряжений и токов, достигающих нескольких киловольт и сотен миллиампер. Основоположник науки об опасности электричества, австрийский учёный Еллинек, столкнувшись при расследовании поражения электрическим током с этим фактом, еще в конце 20-ых годов нашего столетия впервые высказал предположение о том, что решающую роль во многих случаях поражений играет фактор внимания, то есть тяжесть исхода поражения обуславливается в значительной степени состоянием нервной системы человека в момент поражения.

Заключение
Выводом из всего вышесказанного следует то, что не только электричество влияло на прогресс, но и прогресс влиял на развитие электричества. Так как многие открытия совершались в процессе разработки или создания какого-нибудь уже известного прибора. Многие учёные работали ради науки, но были люди, которые стремились сделать открытия ради материального благополучия.

Электричество коренным образом изменило жизнь людей. На заводах стали появляться электрическое освещение, машины, работающие от электрических приводов, и, наконец, сами машины для выработки электричества.

Появилось радио, телеграф, телефон и ещё много вещей, которыми мы пользуемся и по сей день… Люди, которые разрабатывали методики применение электричества в медицине и ставили опыты на себе, вызывают восхищение.

Рассмотрим понятия и термины.

Электрическим током называется направленное движение электрически заряженных частиц. В зависимости от взаимодействия электрического тока с теми или иными веществами эти вещества делят на проводники, диэлектрики и полупроводники.

Проводниками называют материалы, хорошо проводящие электрический ток.

Диэлектрики — вещества, не проводящие электрический ток.

Полупроводники называют промежуточное положение между проводниками и диэлектриками по своему сопротивлению прохождения электрического тока.

Постоянный ток возникает в цепи, если напряжение не меняется с течением времени....

Более 50%
?

Загружая работу автор подтверждает, что ее уникальность более 50%

уникальность
Автор работы
Эксперт
larisa.avtor24
Куплено: 0 раз

Гарантии Автор24

Отзывы от тех, кто уже покупал работу

Fedin A ( 24, НГТУ ) 18-10-2021

В этот раз купила в магазине набор текста. Как и за все другие работы вашего сайта получила отлично. Вы все делаете для клиентов, вот правда. Качество работ очень хорошее, стоимость их доступная, а если сумма заказа превышает определенную цифру, то ее даже оплатить в рассрочку. Спасибо что идете нам на уступки и делаете все, для того чтобы мы к вам возвращались вновь и вновь.

Положительно
Общая оценка 5
Галина Ч ( 24, ОГУ ) 18-09-2021

Никогда не писала отзывы, но вот качество моей монографии настолько порадовало, что не могу не выразить вам свою благодарность. Никогда не покупала готовые работы, всегда делала сама, но в этот раз физически не успевала. Решила заказать на Автор24. немного переживала за качество, но это было зря. работа идеальная, вот честно! Правда на сайте была цена ниже, чем я заплатила, но оно того стоило.

Положительно
Общая оценка 5
Сергей К ( 21, ВГУ ) 18-07-2021

Как то раз понадобилась помощь с одним заданием, сперва думал все сам порешаю, в итоге услышал про один ресурс, нашел, заказал, оплатил и забыл о проблеме. Работу сдал на 4, чтото там преподу немного не понравилось, но это и хорошо. Если б была полностью идеальная вызвало бы подозрения. короче годный сайт, рекомендую

Положительно
Общая оценка 4
Ксения С ( 24, ГУАП ) 13-10-2021

Учусь на третьем курсе, времени нет самой заниматься проверочными заданиями. То работа, то ещё что то. Решила заказать реферат на сайте , первый раз в жизни , на удивление, все понравилось, свое время с экономила и с пользой все, буду всем подружкам советовать. Кстати, преподаватель даже замечаний не сделал и сказал, что тема раскрыта хорошо (хотя он очень придирчивый)

Положительно
Общая оценка 4
Ольга Р ( 24, ТвГУ ) 12-09-2021

Работу купила в магазине готовых материалов. Минус в том, что написана она не с нуля под твои требования. Но зато все быстро и дешево. И качество работы от этого не ухудшается, если честно. За нее я получила 4 (на выше не претендую). Спасибо вам

Положительно
Общая оценка 5
Игорь Е ( 24, БГУФК ) 02-08-2021

Хорошие материалы по вполне доступной цене. В магазине я брал курсовую и другие работы, все они получили высокие оценки, поэтому и вашему сайту я ставлю 5-ку! Всегда работы скачивались сразу после оплаты, а в этот раз пришлось ждать полчаса, пока она будет доступна в моем кабинете. не знаю, с чем это связано

Положительно
Общая оценка 5
Виктория Г ( 24, СибГУТИ ) 15-07-2021

В целом мне все понравилось. Сервис очень удобен, при выборе работы там сразу отображается вся информация: уникальность, количество страниц, предмет, тема и даже ознакомительный фрагмент. Только вот цена была на 50 рублей выше, чем указано на сайте, но несмотря на это работа была идеальная.

Положительно
Общая оценка 5
Кристина Ц ( 21, ОЮА ) 02-08-2021

Не так давно стала мамой и нет совсем свободного времени, а образование все же нужно получать. Все свободное время занимает ребенок, работы по учебе совсем нет времени. Муж посоветовал заказывать в интеренете, говорит сам когда был студентом, то постоянно заказывал различные работы. Подсказал на каком сайте лучше всего, нашла сайт, связалась с менеджером, описала свою тему, оплатила и получила готовую работу очень быстро. Даже не знаю, чтоб я без вас делала.

Положительно
Общая оценка 5
Илья И ( 24, ВГУ ) 06-08-2021

Хочу написать отзыв о своей творческой работе, которую купила в вашем магазине. Не думала что готовый материал может быть настолько хорошим. Преподаватель похвалил меня за индивидуальность, сказал что тема раскрыта полностью и нет лишней воды. Оформлена работа как по нашей методичке. Замечаний не было, одна похвала. Спасибо, буду рекомендовать друзьям ваш сайт

Положительно
Общая оценка 5
Дима К ( 24, МГЭИ ) 22-08-2021

Это как раз, то что мне и нужно было, когда я начал искать сайт для заказа работы. Все сделал как и рассказывали, цена и правда удивила, я уже про скорость получения файла молчу. Никогда бы не подумал, что можно так быстро решить проблемы и остаться с нормальными нервами. Теперь буду чаще пользоваться магазином. Спасибо